
IEEE NETWORK 1

From Software-Defined to Human-Defined
Networking: Challenges and Opportunities

Elisa Rojas

Abstract—The SDN paradigm is still in an early stage of
development. Considering full automatization and effortless man-
agement as the main objective of these networks, we believe
diverse challenges need to be tackled. For this purpose, this
article reviews the SDN architecture from top to bottom, pay-
ing attention to components yet under standardization or that
demand enhancement from a network operator’s perspective.
The main conclusion is that the SDN area requires a significant
amount of research to reach its full potential, which we consider
a huge opportunity to innovate toward a truly human-defined
networking.

Index Terms—Software-Defined Networking, Network Archi-
tecture, Network Management, Future Internet.

I. TOWARD HUMAN-DEFINED NETWORKING

THE Software-Defined Networking (SDN) paradigm
emerged in recent years, decoupling the control and data

planes and breaking the vendors stranglehold. SDN brought
the desired opening of black boxes of functionality to service
providers, together with a new hope to decrease the costs
involved in provisioning and managing large networks [1].

As one pillar of SDN is logically centralizing the network
intelligence, scalability [2] and security [3] are two of the
main topics discussed. Nevertheless, diverse challenges related
with the SDN architecture need to be tackled, such as the
management plane [4] or the evolution of the Northbound
Interface (NBI) and Southbound Interface (SBI) [1]. Further-
more, from our experience, many telcos still perceive the SDN
world as a jungle to go deep into and initially feel reluctant to
completely change their approach to networks, while it should
be considered totally the opposite, as a technology that eases
the landing of new network applications and services.

To convert the SDN ecosystem into a reality in everyday
networks, we need to step toward the concept of Human-
Defined Networking (HDN), where information and interac-
tions emanate from the people managing the network instead
of being strictly software or even hardware dependent (tra-
ditional networks). Basing concepts on human-like behaviors
will ease the evolution of networking. HDN is one branch of
the SDN concept focused on the human part of the network
(network managers) and it should be capable of:

1) Providing deployment flexibility: Users might vary
their necessities over time, and thus managers require
networks to be flexible enough to evolve accordingly. A
direct consequence is that network functionality needs
to be modular, so that these modules can be acti-
vated/deactivated (or even dragged and dropped in a

Elisa Rojas is with Telcaria Ideas S.L., 28911 Leganes (Madrid), Spain,
e-mail: elisa.rojas@telcaria.com

graphical interface) following the requirements at each
moment and without losing the tight control network
managers are used to have.

2) Constructing complex behaviors automatically: Com-
position of network modules should not derive in mono-
lithic solutions, but rather in flexible combinations in
which potential conflicts are even resolved automatically
based on hints provided by the network manager. Ide-
ally, this should be dynamically done at run-time and
independently of the NBI. If not, this implies evolving
the semantics for writing functionality, related with the
next point.

3) Speaking and understanding a human-like language:
An SDN requires engineers to develop software written
in a specific language, even if they lack networking
knowledge. While an HDN exhibits a higher abstraction
in the NBI to network managers, avoiding the need for
specific software programming.

4) Disengaging from the physical network: Network
managers should be able to control networks inde-
pendently of what is physically deployed. Thus, SBI
protocols should be able to abstract network elements
and not depend on them (as it currently does). HDN
focuses on serving the users, not the network, and thus
its motto: network as a means, not as an end.

These four requirements, interrelated as a puzzle, become
fundamental pieces that facilitate network management. The
first three ease deployment, development and run-time phases
in an SDN, particularly the ones operated manually (that is, by
humans). While the last one aims to release the –still existing–
dependency between software and hardware in SDN, which
indirectly affects the three aforementioned ones.

In this paper we present the main challenges, and thus
opportunities, to move toward HDN. Combining state of the
art and future directions for research, we hope it helps the
evolution of the SDN paradigm. For this purpose, we traverse
the SDN architecture top to bottom. As depicted in Fig. 1, we
start with the concept of an SDN app store, followed by the
act of Writing an SDN app, then the review of what could
be considered the next steps for OpenFlow in Approaching
OpenFlow+, and finally we try Unboxing the network boxes.
Hence, according to the SDN architecture defined by the Open
Networking Foundation (ONF), we analyze the Application
and Data planes, leaving the intermediate Control plane as an
independent box, which contains the specificities of the SDN
platform deployed.



IEEE NETWORK 2

Fig. 1. SDN architecture and the challenges covered in this article

II. SDN APP STORE

Imagine a telco operator with a clear plan to leverage SDN
in the incoming years: they know the services and have defined
a project outline, so now what is the next step? That is,
provided they have listed all the SDN ingredients, where is
the SDN grocery? Currently, no clear marketplace for SDN
applications (or apps) exists. If an operator requires some
app, they should check the SDN platforms available and their
apps catalog. For this reason, most times SDN frameworks are
selected based on the apps or use cases they implement. More-
over, network managers usually end up modifying existing
apps because these catalogs are scarce and rarely accomplish
all the requirements of the operator. This restricts deployment
flexibility, which is the first key component of HDN.

Fig. 2 shows a summary of the use cases published by the
two most popular SDN open source projects at the moment:
OpenDaylight (ODL) and ONOS. The left side lists the use
cases and the right indicates some of the Projects (ODL) or
Apps (ONOS) related with them.

There are a few commercial approaches for an SDN app
repository. One is HP’s SDN App Store, which offers a selec-
tion of SDN applications to be deployed with the enterprise-
ready HPE VAN SDN controller. But altogether represent just
a few dozens of apps and entirely designed for their SDN
controller.
Another repository is NEC’s SDN Partner Space or Open
Global SDN Ecosystem Program, with a slightly different
approach, as it presents SDN applications inside well-defined
use cases, offering not only the apps, but also hardware,
installation and maintenance support.

To accomplish the deployment flexibility required by HDN,
two concepts need to be further developed related with the
SDN app store: SDN app packages, plus support and updates.

Fig. 2. Well-known use cases for the most popular open source SDN
platforms: ODL and ONOS

A. SDN app packages

A first step toward the concept of an app store is the
definition of an SDN app package. For example, an Android
package needs to accomplish a set of conditions before being
published in the Google Play store, such as: accepting terms
and policies, establishing hardware and software requirements
or determining the installation price. In the particular case of
the SDN world, an initial idea would be reusing two common
concepts of general software applications: system requirements
and configuration parameters. The question remains open
though: how should we express them?

1) System requirements: System requirements are usually
defined during the development phase of the SDN app. Apart
from the SDN platform, the system requirements include
hardware and software requirements (CPU, memory or specific
software packages) and also network requirements (such as
SBI protocols supported, type of SDN switch or type of
network). For example, a layer-two switch application could
require any free-loop topology and this should be verified prior
to deployment.

2) Configuration parameters: Configuration parameters are
usually defined during the deployment phase of the SDN



IEEE NETWORK 3

app, but they previously require some hooks in the app that
allow them. Examples of configuration parameters are specific
default rules for a firewall or the table cache duration for
a routing application. Additionally, an SDN package could
define how to combine itself with another package, that is,
specific parameters for SDN app composition. For instance,
if we want to deploy the firewall and the routing apps, they
could have one parameter to indicate their execution priority.
However, composition of SDN apps is still under research and
not fully covered by current SDN platforms.

B. Support and updates

Finally, SDN apps and their supporting platforms should
allow updates to enrich them with new functionalities or
solving reported bugs. Although some SDN platforms, such
as ONOS, are already considering the possibility of allowing
gradual upgrades of the platform and its apps (including rolling
them back), no clear consensus exists in the community about
support and updates of software. Thus, a telco willing to install
an SDN scenario should hire its own experts and support for
the deployment, which increases the costs considerably.

Updates are specifically challenging in the case of big net-
works, which are constantly changing in response to increasing
traffic demand and deploying new services (thus, upgrading
the network on a daily basis) [5]. The requirements for these
updates include:

1) Updating network elements consistently: Control and
data plane need to be synchronized. This provides con-
sistency at the cost of a convergence time to reach a
common status.

2) Verifying large control plane updates: A test procedure
should be defined for automatic verification before and
after onboarding new functionality.

3) Being incremental: Smaller and frequent updates are
usually safer and easier to verify using automated tools,
resulting in more robust systems [5].

4) Preserving availability vs. Security: Decisions need to
be made if some inconsistency is found in the network.
Should we turn off network elements as soon as an
inconsistency/error is found, or should we degrade them
gracefully? Should other adjoining components follow
the same instructions?

Classical software methods such as rollback operations or
revision control could be applied in the context of SDN.
However, SDN not only requires a repository to track and
maintain the copy of the network, but it would probably need
certification authorities to avoid security risks, particularly if
the network is medium or large size.

Finally, other aspects to consider involve: detecting mal-
functioning parts of the network (software aging also affects
SDN), or determining when/where an update should be applied
(e.g. for non-critical updates, users might determine whether
they want to apply changes now or later).

III. WRITING AN SDN APP

If none of the existing SDN apps accomplish what a network
administrator requires, they will be developed from scratch.

For this task, several aspects have to be taken into account,
namely: the SDN platform as well as its NBI, the SBI protocol
deployed, the shape and size of the network, the network
devices to be controlled by the SDN app and other apps
already running in the network.

The SDN platform defines the NBI and thus the language
to develop the app (Java in the case of ODL or ONOS, Python
for Ryu, etc.)1. This is a first constraint and it also determines
the interfaces to access the network devices, which takes us to
the next point: the SBI protocol (OpenFlow, NETCONF, etc.).
The SDN platform creates an abstraction so that the developer
writing code for the NBI avoids handling SBI specificities, but
in the end they are still tightly related. For example, writing
an application in Ryu not only depends on the SBI protocol,
but also on its version; other platforms such as ODL or ONOS
bypass that version dependency, but still designate a driver and
interface per SBI protocol.

The shape and size of the network also affect how an app
will be written; the shape determines how the app handles
events (for example, if the network has a loop, broadcasting
messages should be avoided) and the size decides whether the
app should be partitioned in modules (to guarantee scalability,
for instance). Finally, the developer needs to know which
devices will be controlled by the app and what other apps
are running in the network to avoid conflicting rules and
misbehaviors.

The direct consequence of these factors is that network
managers now need to be both expert software developers
and networking engineers [6], which causes SDN expertise
to be in vogue. In practice, this represents an obstacle for
network operators, who demand the advantages of SDN with-
out the complexity of looking for such concrete profiles.
This constraint could be solved by following the second and
third requirements of HDN: constructing complex behaviors
automatically (i.e. no need for expert networking engineering)
and speaking and understanding a human-like language
(i.e. no need for software developers). The next sections
describe the current state of the art and missing items to
accomplish each requirement, respectively.

A. Composing applications

Most of SDN platforms define some criterion for composing
application modules when more than one is running. For exam-
ple, the Floodlight controller executes apps in a specific order
(determined previously to deployment) and each application
decides whether to pass the event to the next module or drop
it, thus stopping the global execution associated to the event.
Other platforms such as ODL or ONOS also employ priority
levels. Therefore, modules with higher priority are always exe-
cuted first and there is no chance of modules competing at the
same level or changing priority levels depending on the event
type. Consequently, some behaviors cannot be characterized
due to lack of flexibility at the SDN controller, while users

1Language-independent APIs, such as REST or AMQP, are currently
supported by diverse SDN platforms. However they are supplementary to the
core APIs of the platform and usually leveraged for asynchronous behavior,
as strictly using them alone would involve additional TCP connections, thus
deteriorating performance



IEEE NETWORK 4

demand some common semantics for composing applications
at the NBI.

One of the first semantics to tackle this problem was
defined in CoVisor [7], as parallel and sequential composition
sentences. For instance a monitor and a forwarding app might
run in parallel, while a firewall and a router are executed
sequentially, as the firewall filters the traffic first (see Fig. 3).
Other approaches based on parallel and sequential semantics
are NetIDE (which extends CoVisor to support more SBI pro-
tocols) or FlowBricks (which requires modifying OpenFlow).
Finally, specific architectures for composition are: Redactor
(which uses declarative languages), Statesman or Corybantic
(which require a custom interface for network modules). Later
on, proposals based on graphs such as PGA [8] consider that
the parallel and sequential operators are unable to express
some composite behaviors and propose graphs to enrich the
composition capabilities.

Fig. 3. Examples of composition: parallel (left) and sequential (right)

A particularly challenging part of composing applications
are vetoing actions. Composing apps in parallel, in sequence
or in graphs comes quite naturally chaining the outputs, but
how to response when two or more apps are in conflict and
specifically when one app does not want to allow some action
whatsoever? How can we define this hierarchy and how can
we avoid loops in actions (for example, one app installs a
flow and another vetoes it and deletes it, and then the first app
installs it again)? These questions still remain unanswered.

To achieve this, the first step would be analyzing what
network functionality will be the foundations of any SDN
deployment. Future research directions should investigate the
set of actions (add, modify, delete, avoid, etc.) and operators
(linear merging, graphs, diagrams, etc.), to express it.

B. Intent-Based Networking

As already mentioned, one of the big deals to write an app
is that the NBI is still maturing. Consequently, each SDN
platform ends up designing its own interface according to
its own requirements, complicating the idea of a generalized
method for app development.

One of the first attempts to create a higher-level abstraction
for the NBI was Pyretic (currently deprecated and absorbed
into the Frenetic SDN controller), by defining the concept of
network policies and a set of operators to combine them that
later inspired CoVisor. However, it was restricted to OpenFlow

1.0 and the POX controller, it required an additional TCP
connection and its semantic was still quite dependent on the
SBI protocol.

Later on, the concept of Intent-Based Networking (IBN)
appeared to standardize the NBI with a unified language
common to all SDN platforms. Thanks to IBN, developers
write their apps based on what they want to do in their network
instead of how. IBN provides a higher abstraction of the
network, so that developers do not necessarily need to know
concrete details of the deployment. To accomplish the HDN
criteria, IBN should procure the capabilities of inserting a
shapeless app in the network. A shapeless app does not require
to match specific network devices or network layers and it only
defines the logic independently from the hardware, and thus,
independently from the SBI protocol. These shapeless apps
could be combined by the network administrator as functional
blocks. For example, they would be defined as I want these
two hosts to communicate, just for web services, instead of I
want to install these TCP flow rules in these switches, to filter
web traffic between hosts.

Nevertheless, current proposals for IBN languages, such as
NeMo or the ONOS intent framework, are unable to accom-
plish this abstraction since they still rely on commands related
with the TCP/IP stack, while we require a human-readable
language independent from the network characteristics. Other
approaches provide abstractions for the NBI without reaching
the level of a human-like language, such as: KnowNet (which
implements the NBI as a knowledge graph), Gavel (which
represents networks as graph databases) or Ravel (which is
considered a Database-Defined Network).

This ideal or pure IBN is still under research, being it critical
for the development of future apps, especially now that new
scenarios come into the SDN spectrum, such as the Internet
of Things, SmartHome environments or 5G networks. Some
open questions include: how to specify intents, how to deploy
the network based on them, or how to reconcile intents and
the network elements [5]. Intent-Driven Networking (IDN) [9]
proposes a roadmap toward IBN without rewriting the entire
network stack and providing backward compatibility (non-IBN
behaviour).

IV. APPROACHING OPENFLOW+
When the SDN term appeared, many people could not

distinguish between OpenFlow and SDN, mainly because
OpenFlow was –and still is– the core SBI protocol, contribut-
ing to the arrival of the SDN paradigm. OpenFlow cracked the
network into data and control planes, demarcating one before
and one after, but still lacks many desirable properties for a
completely functional SDN concept. To accomplish the fourth
requirement of HDN, the SBI protocol should provide the
capability of disengaging the controller from the physical
network. Thus, research should focus on how to communicate
hardware and software without creating a dependency; for
instance, the protocol should not depend on how the hardware
implements flow tables. Particularly, this requirement smooths
network management, as the person operating the network will
only have to care about the software and not the underlying
hardware anymore.



IEEE NETWORK 5

A. Why OpenFlow 1.X is not enough
OpenFlow versions are mainly extensions of OpenFlow 1.0,

adding extra fields for messages and flow matching, plus fixes
for edge cases. In fact, the most popular SDN platforms just
support OpenFlow 1.0 and 1.3, and do not plan to integrate
more versions in the near future. The reason behind is that
OpenFlow 1.0 was the first release and 1.3 was the version
most supported by vendors, primarily due to the important
features provided for data center and campus networking:
IPv6, Quality of Service (QoS), and Q-in-Q tunneling. The
main problem with OpenFlow is that new specifications were
developed at high rate, while the hardware development cycle
rate was much slower. Thus vendors constrained the evolution
of the protocol, keeping at the same time the stranglehold of
switching hardware.

For instance, a missing must-have in OpenFlow are transac-
tional operations. Transactions would allow consistency along
the network, especially considering a state change triggered
by the controller might take a prolonged period of time to be
effective or it might fail in particular nodes. Different studies
show that the lack of synchronization of rule updates across
network devices not only cause temporary inconsistencies,
but also lead to packet losses [10]. Transactional operations
were in the table since the beginning of the protocol, but
were not developed in the end due to their complexity. Some
proposals suggest how transactions could be a reality, what
characteristics the network should have and why a global
solution to the problem is complicated [11], [12].

B. Alternatives to OpenFlow
Programming Protocol-Independent Packet Processors

(P4) [13] proposes the forwarding plane processes packets
disregarding implementation details. It relies on a compiler
that will later transform the program to be mapped in a target
switch.

Protocol Oblivious Forwarding (POF) suggests how the
primitive instruction set should be. A POF forwarding element
does not understand the standard packet format and flow table
search keys are defined as {offset, length} tuples.

As a consequence, and based on the protocol-independent
forwarding nature of P4 and POF, the ONF created the
protocol independent layer for OpenFlow (OF-PI), a promising
but still immature project.

We believe a first step for a true disassociation from the
network elements would be questioning the match/action tuple
abstraction used in SBI protocols. Thus, reimagining how
network functionality could be expressed in alternative and
more sophisticated ways.

V. UNBOXING THE NETWORK BOXES

Apart from the SBI protocol, the type of devices that
shape the network are also critical to accomplish the fourth
requirement of HDN. Adding features in the hardware is di-
rectly translated into more control possibilities for the network
manager. In this section, we envision the following research
directions: how white boxes should be ideally designed, and
why network devices should not be totally dumb, applied both
to forwarding and end devices.

A. White boxes

In traditional networks, telcos and their network administra-
tors work with black boxes of functionality. These boxes are
designed and mantained by manufacturer companies, and thus
closed to modification by their clients. Usually, these boxes
provide the required services plus some extras to increase
market competitiveness. Therefore, in practice many telcos
end up with duplicated services and they can only manage
proprietary interfaces and parameters. For example, it might
happen that a telco buys two routers from two different
providers and they both offer a firewall service as an extra, thus
obtaining a duplicated service even when it was not requested.
Furthermore, just a few companies produce the majority of the
telecommunication hardware, so these devices usually have
high prices.

Thanks to OpenFlow, vendors were forced to open their
interfaces allowing fine-grained control over their boxes. How-
ever, these gray boxes were still limited by the programma-
bility of the existing hardware technology. As we mentioned
in the past section, network administrators could now only
implement what the device supported. In order to allow
full programmability and control of the network, pure white
boxes are required. These boxes would use generic network
programming models, as described in previous sections.

Additionally, although the white boxes concept could be
achieved theoretically, further research should be carried out
in terms of performance and network features support for
commercialization. Currently, OpenFlow switches (and even
software switches such as Open vSwitch or CPqD’s of-
softswitch13) differ from one vendor/implementation to other.
Thus, this variability should be tackled for an ideal white box
concept.

B. Dummy boxes

Another school of thought believes that not all the com-
plexity should go to the controller, as it makes the network
too dependent on controller implementations, which is not a
balanced approach. Smarter boxes could fit in different SDN
scenarios, making the global solution far superior to others that
base their intelligence just in the controller. Likewise, allowing
these alternative ways of allocating the SDN intelligence
would extricate creative networking.

In DevoFlow [14], the authors question the costs of involv-
ing the controller frequently and propose switches only target
specific flows, reducing the communication between control
and data plane. They conclude betting that the dummy box
approach of OpenFlow will not meet the requirements of high
performance networks.

OpenState [15] outlines the concept of a stateful data
plane, which would be beneficial to offload controllers from
decisions based on local knowledge. They define an extension
of the OpenFlow match/action abstraction and prove it with
a hardware implementation based on FPGA boards. Some
approaches also believe in an updated architecture in which
network devices implement parts of the SDN apps directly in
the data plane.



IEEE NETWORK 6

C. Dummy hosts

End devices, currently secluded from the SDN ecosystem,
could also be part of it. One of the main reason to keep
them out of the scope is their disparate nature: laptops, mobile
phones, IoT chips, etc. Nevertheless they keep implementing
classic protocols and the TCP/IP stack, which hampers SDN
deployments: a fact that should not be omitted.

For example, an SDN controller might prepare the routes
between a couple of hosts, but this does not avoid Address
Resolution Protocol (ARP) or Neighbor Discovery (ND) mes-
sages, generated at the host previously to any communication.
The solution to this consists in implementing a proxy service
for ARP and ND requests, in which the edge nodes (the first
neighbors of the end devices controlled via SDN) contact
the controller to resolve those petitions. The fact is that
the controller might be aware of the hosts and all their
information from the start, but as the hosts are isolated from
this knowledge, they will still request the information as usual.

Fig. 4. Host A sends data packets to Host B and, at the same time, control
packets to the edge switch (in-band SDN communication)

The main handicap of including intelligence at host nodes is
they belong to miscellaneous types of hardware and execute a
wide range of software (operating systems). However, ongoing
research believes in moving network functions to the edge to
offload the core and running a virtual network appliance at
end devices (e.g. smartphone) could be seen as feasible in
the near future. Modifying the hosts to support SDN might
seem unrealistic, but one could think of a device running an
OpenFlow agent as it can execute an SSH client. This agent
could then exchange knowledge with the controller via in-band
communication (not requiring an out-of-band specific network
interface for the control plane), as depicted in Fig. 4.
In any case, although many may presume redefining the hosts
as part of the SDN paradigm is not necessary, the discussion
is still open.

VI. CONCLUSION

The SDN paradigm is flourishing rapidly, but so far the
focus remains on replicating most of the functionalities that
traditional networks implemented before. Network operators
demand an open network with effortless management and
reduced cost, and expect SDN to accomplish all of it. In order

to assist SDN in accomplishing these requirements, we define
the concept of HDN, followed by four principles.

Along the article, we examine the state of the art and present
what we consider challenges (and thus opportunities) for the
forthcoming research in the SDN area. Proceeding up to down
in the SDN architecture, we explore the concept of SDN
app stores, the development of SDN apps independent of the
SBI restrictions or specific languages, the evolution of SBI
protocols and the implementation of network devices.

The main conclusion draws that SDN is still in an early
stage, and hence profuse research and standardization effort
needs to be carried out for a smooth transition from traditional
networks. Specifically, lessons learned are:

• To allow deployment flexibility in the network, the
concept of app module or app package needs to be
defined and generalized for different SDN frameworks.
Afterward, an app store could be created accordingly to
fulfill the needs of operators, who would simply drag and
drop these services into their SDN deployments.

• To guarantee the growth of the app store, development
of apps needs to be easy and straightforward. Thus, the
NBI needs research efforts toward a human-like language
interface, which also should permit effortless composition
of different app packages. This would drastically decrease
costs for network operators.

• To provide independence of the NBI and the SBI, the
SBI should evolve to support truly open and generalized
protocol(s). Currently, OpenFlow is not enough and some
initiatives such as P4 are appearing. Moreover, network
devices could refine the paradigm by adding some SDN
intelligence in them or possibly including end devices as
part of SDN deployments, which needs further study to
prove pros and cons.

It is worth noting that research directions toward HDN might
affect other aspects of SDN, such as security. For instance,
providing a higher abstraction to the NBI should not imply
loosening control over the network. Also, third parties might
be required for certification of SDN apps if the app store
becomes a reality. Finally, including end hosts in the SDN
arena might create security risks to forwarding devices, which
could be solved defining a hierarchy or isolating parts of the
SDN from others.

Above all, we hope this article serves as a summary and
inspirational tool for future research in the SDN area.

ACKNOWLEDGMENT

This work is partially supported by the EC FP7 NetIDE
project, G.A. 619543 and by grants from Comunidad de
Madrid through Project TIGRE5-CM (S2013/ICE-2919).

REFERENCES

[1] D. Kreutz, F. M. V. Ramos, P. E. Verssimo, C. E. Rothenberg, S. Azodol-
molky, and S. Uhlig, “Software-Defined Networking: A Comprehensive
Survey,” Proceedings of the IEEE, vol. 103, no. 1, pp. 14–76, 2015.

[2] S. H. Yeganeh, A. Tootoonchian, and Y. Ganjali, “On scalability of
software-defined networking,” IEEE Communications Magazine, vol. 51,
no. 2, pp. 136–141, February 2013.



IEEE NETWORK 7

[3] M. C. Dacier, H. Knig, R. Cwalinski, F. Kargl, and S. Dietrich, “Security
Challenges and Opportunities of Software-Defined Networking,” IEEE
Security Privacy, vol. 15, no. 2, pp. 96–100, 2017.

[4] J. A. Wickboldt, W. P. D. Jesus, P. H. Isolani, C. B. Both, J. Rochol,
and L. Z. Granville, “Software-defined networking: management require-
ments and challenges,” IEEE Communications Magazine, vol. 53, no. 1,
pp. 278–285, January 2015.

[5] R. Govindan, I. Minei, M. Kallahalla, B. Koley, and A. Vahdat, “Evolve
or Die: High-Availability Design Principles Drawn from Google’s
Network Infrastructure,” in Proceedings of the 2016 ACM SIGCOMM
Conference, ser. SIGCOMM ’16, 2016, pp. 58–72.

[6] D. M. Batista, G. Blair, F. Kon, R. Boutaba, D. Hutchison, R. Jain,
R. Ramjee, and C. E. Rothenberg, “Perspectives on software-defined
networks: interviews with five leading scientists from the networking
community,” Journal of Internet Services and Applications, vol. 6, no. 1,
p. 22, 2015.

[7] X. Jin, J. Gossels, J. Rexford, and D. Walker, “CoVisor:
A Compositional Hypervisor for Software-defined Networks,” in
Proceedings of the 12th USENIX Conference on Networked
Systems Design and Implementation, ser. NSDI’15. Berkeley, CA,
USA: USENIX Association, 2015, pp. 87–101. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2789770.2789777

[8] C. Prakash, J. Lee, Y. Turner, J.-M. Kang, A. Akella, S. Banerjee,
C. Clark, Y. Ma, P. Sharma, and Y. Zhang, “PGA: Using Graphs to
Express and Automatically Reconcile Network Policies,” SIGCOMM
Comput. Commun. Rev., vol. 45, no. 4, pp. 29–42, Aug. 2015. [Online].
Available: http://doi.acm.org/10.1145/2829988.2787506

[9] Y. Elkhatib, G. Tyson, and G. Coulson, “Charting an Intent Driven
Network,” CoRR, vol. abs/1604.05925, 2016. [Online]. Available:
http://arxiv.org/abs/1604.05925

[10] T. Truong, Q. Fu, and C. Lorier, “FlowMap: Improving network manage-
ment with SDN,” in NOMS 2016 - 2016 IEEE/IFIP Network Operations
and Management Symposium, April 2016, pp. 821–824.

[11] M. Canini, P. Kuznetsov, D. Levin, and S. Schmid, “A distributed and
robust SDN control plane for transactional network updates,” in 2015
IEEE Conference on Computer Communications (INFOCOM), April
2015, pp. 190–198.

[12] S. Dudycz, A. Ludwig, and S. Schmid, “Can’t Touch This: Consistent
Network Updates for Multiple Policies,” in 2016 46th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN),
June 2016, pp. 133–143.

[13] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker,
“P4: Programming Protocol-independent Packet Processors,” SIGCOMM
Comput. Commun. Rev., vol. 44, no. 3, pp. 87–95, Jul. 2014. [Online].
Available: http://doi.acm.org/10.1145/2656877.2656890

[14] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma,
and S. Banerjee, “DevoFlow: Scaling Flow Management for
High-performance Networks,” SIGCOMM Comput. Commun. Rev.,
vol. 41, no. 4, pp. 254–265, Aug. 2011. [Online]. Available:
http://doi.acm.org/10.1145/2043164.2018466

[15] G. Bianchi, M. Bonola, A. Capone, and C. Cascone,
“OpenState: Programming Platform-independent Stateful Openflow
Applications Inside the Switch,” SIGCOMM Comput. Commun.
Rev., vol. 44, no. 2, pp. 44–51, Apr. 2014. [Online]. Available:
http://doi.acm.org/10.1145/2602204.2602211


