
0

Are we ready to drive Software Defined Networks? A Comprehensive
Survey on Management Tools and Techniques

ELISA ROJAS, Telcaria Ideas S.L.
ROBERTO DORIGUZZI-CORIN, FBK CREATE-NET
SERGIO TAMUREJO, Institute IMDEA Networks
ANDRES BEATO, Telcaria Ideas S.L.
ARNE SCHWABE, University of Paderborn
KEVIN PHEMIUS, Thales Communications & Security
CARMEN GUERRERO, University Carlos III of Madrid

In the context of the emergent SDN paradigm, the attention is mostly directed to the evolution of control protocols and
networking functionalities. To this end, network professionals need the right tools to reach the same level –and beyond– of
monitoring and control they have in traditional networks. Current SDN tools are developed on an ad hoc basis, for specific
SDN frameworks, while production environments demand standard platforms and easy integration. This survey aims to foster
the definition of the next generation SDN management framework by providing the readers a thorough overview of existing
SDN tools and main research directions.

CCS Concepts: rNetworks → Programmable networks; Network management; Network monitoring; Network design
principles;

Additional Key Words and Phrases: Software-Defined Networking, Network Maintenance, Debugging, Resource Manage-
ment, Simulation, Profiling, Monitoring

ACM Reference Format:
Elisa Rojas, Roberto Doriguzzi-Corin, Sergio Tamurejo, Andres Beato, Arne Schwabe, Kevin Phemius and Carmen Guer-
rero, 201X. Are we ready to drive Software Defined Networks? A Comprehensive Survey on Management Tools and Tech-
niques. ACM Comput. Surv. 0, 0, Article 0 (0), 33 pages.
DOI: 0000001.0000001

1. INTRODUCTION
Software-Defined Networking (SDN) has emerged strongly in the last decade, especially since the
publication of the first OpenFlow (OF) [McKeown et al. 2008] protocol specifications. The key
notion behind SDN is to introduce a separation between the control plane and the data plane of a
communication network. The control plane is implemented via a logically centralized component
called “the controller”.

However, similarly to the heterogeneity reminiscent of the early Internet [Huang and Griffioen
2013], the current SDN ecosystem is extremely fragmented due to the multitude of different con-
troller platforms. Therefore, although SDN introduces new possibilities for network management
and configuration [Kim and Feamster 2013] and it solves classical network management problems,
it also creates new challenges [Wickboldt et al. 2015]. For example, the management plane is a large
and underexplored area, particularly in high-availability designs [Govindan et al. 2016]. That is why

This work is partially supported by: EC FP7 NetIDE, EC H2020 SUPERFLUIDITY and Spanish DRONEXT.
Author’s addresses: E. Rojas and A. Beato, Research Department, Telcaria Ideas S.L.; R. Doriguzzi-Corin, Future Networks
Department, FBK CREATE-NET; Sergio Tamurejo, Institute IMDEA Networks; Arne Schwabe, Fakultat fur Elektrotech-
nik, Informatik und Mathematik, University of Paderborn; Kevin Phemius, Thales Communications & Security; Carmen
Guerrero, Departamento de Ingenieria Telematica, University Carlos III of Madrid.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
c© 0 ACM. 0360-0300/0/-ART0 $15.00
DOI: 0000001.0000001

ACM Computing Surveys, Vol. 0, No. 0, Article 0, Publication date: 0.

0:2 E. Rojas et al.

addressing SDN management issues is imperative in order to avoid patching SDN later [Wickboldt
et al. 2015].

To this purpose, we provide a comprehensive overview and analysis of the SDN tools that are
currently available as a concrete part of SDN management and control. The survey covers almost a
hundred of tools from different types. Most of them have been designed in the last five years, but
we aim to cover the topic from the beginning of the SDN paradigm until the present day.

1.1. SDN tools: An overview
Any piece of software that facilitates the development, deployment and/or maintenance of SDN
architecture and, more specifically, of network applications can be classified under the SDN tool
category. They complete the puzzle of an ideal SDN management framework. When a tool is used
at development time, we consider it offline, whereas when applied at deployment or run-time, we
call it online. Offline tools are mainly verifiers or model checkers, but this category may also in-
clude simulators; while online tools encompass: loggers, debuggers, profilers, memory managers
and emulators. Additionally, there are also parts of the SDN architecture that might be considered
tools, such as the communication protocols and channels, or the intrinsic mechanisms of the SDN
controllers that allow different SDN applications (or even frameworks) to work together without
conflicting with each other. More specifically, we envision the following classes of SDN tools:

— Composition: Composition of SDN applications and services let the network support upgrades
and expansions, including newer functionalities or coordinating several software modules.

— Debugging: Troubleshooting, verification and model checking aim for the same objective: the
network behaves as expected. Their differences are related to the part of the network that needs to
be analyzed (data or control plane) and at which time (development, deployment or run-time).

— Resource management: To guarantee an optimal utilization of network resources.
— Profiling: To prove that resource management is effective, we need profilers or monitors to mea-

sure the network activity and resource consumption.
— Simulation: To repeat different scenarios without affecting the production network, simulators

and emulators represent an essential tool.

1.2. Related work
Although detailed surveys about SDN exist [Hu et al. 2014b; Jarraya et al. 2014; Nunes et al. 2014;
Xia et al. 2015; Hakiri et al. 2014], they basically describe the big picture of SDN, traversing the ar-
chitecture layers up to down [Singh and Jha 2017], focusing on security [Dargahi et al. 2017; Rawat
and Reddy 2017; Khan et al. 2016], energy efficiency [Tuysuz et al. 2017], scalability [Karakus and
Durresi 2017; Huang et al. 2017; Oktian et al. 2017], traffic engineering [Mendiola et al. 2017],
Northbound Interface (NBI) and Southbound Interface (SBI) interfaces [Masoudi and Ghaffari
2016], wide-area networks [Michel and Keller 2017], transport networks [Alvizu et al. 2017] or
compatibility issues, but leaving the Management-Control entity aside.

Some surveys mention the concept of debugging tools [Kreutz et al. 2015; Nde and Khondoker
2016], or focus on specific tools like topology discovery [Khan et al. 2017], but providing just a few
examples and without delving into much detail.

In contrast with them, this survey focuses on the state of the art of SDN tools in a generalized
manner, as part of the Management-Control entity.

1.3. Contributions and structure of this survey
This paper provides a comprehensive survey of the tools proposed in the literature for the manage-
ment and control of SDN. We classify and compare them, following different criteria. Finally, we
discuss and reach a conclusion about the current status of management tools in SDN.

We start with Section 2, where we describe the SDN architecture as defined by the Open Net-
working Foundation (ONF), and give an overview on different approaches for interfacing SDN
tools and SDN platforms. Section 3 is devoted to composition, a service envisioned to allow mul-

ACM Computing Surveys, Vol. 0, No. 0, Article 0, Publication date: 0.

Are we ready to drive Software Defined Networks? A Comprehensive Survey on Management Tools and Techniques0:3

Fig. 1. SDN architecture overview [ONF 2016]

tiple SDN applications or frameworks to cooperate on controlling the same network infrastructure.
Section 4 addresses debugging tools, which encompass any diagnostic tool that aims to find network
malfunctions. Section 5 describes different approaches for the management of the memory of the
SDN-enabled devices, to optimize the usage of such a scarce resource. Section 6 introduces network
profilers, proposed to monitor the network resources. Section 7 compares different simulators and
emulators that can support the development and testing of SDN applications. Afterward, Section
8 discusses the analysis of all the previous sections and yields future research directions. Finally,
Section 9 concludes the paper.

2. TOOLS IN THE SDN ARCHITECTURE
Currently, the ONF definition provided in [ONF 2016] is the reference for most controller frame-
works. The architecture (Fig. 1) defines three planes –Data, Controller, and Application–, plus a
Service Consumer module which encompasses the Management and Control functions.

The physical Resources (pRs) are confined in the Data plane. Communication with the upper
plane is performed through the data-controller plane interface (D-CPI), also known as the SBI,
which exposes the capabilities of the pRs. SDN controllers are located in the Controller plane
and have a twofold objective: to control the Data plane resources and to orchestrate the requests
of the Application plane. Accordingly, the SDN controller virtualizes and orchestrates the virtual
Resources (vRs) onto its own underlying pRs. Services (such as topology monitoring, statistics or
API abstractions to control the Data plane) are offered as a vR from the Controller to the Application
plane via the application-controller plane interface (A-CPI), often called the NBI. SDN applications
are software modules that reside in the Application plane, and communicate their desired network
behavior to the Controller Plane via the A-CPI.

Finally, Management and Control are viewed as a continuum, i.e. as the same entity, which can
operate over all the three aforementioned planes. Its minimum functionality is to allocate resources
from a resource pool in the Data plane to a particular client in the Controller plane, and to establish
reachability information that permits the Data and Controller plane entities to mutually communi-
cate. Management-Control functions are provided by the Operations Support Systems (OSS); which
includes features such as: infrastructure maintenance (fault analysis, diagnostics, alarm correlation
and management), logging, configuration and service persistence, traffic analysis or initialization
parameters1. Some of these functions are in the scope of SDN and implemented by means of what
we call as SDN tools, presented in the following sections of this paper.

1In contrast with this schema, some approaches (e.g. NEOD [Song et al. 2013] and PDEE [Kuklinski 2014]) embed part of
the management functions in the Data Plane, through firmware extensions for the network devices.

ACM Computing Surveys, Vol. 0, No. 0, Article 0, Publication date: 0.

0:4 E. Rojas et al.

The Management-Control entity interacts with other planes through the use of interfaces. As
pointed out in [Jarschel et al. 2014], having open interfaces is crucial in the adoption of SDN. In
this sense, many specifications have been proposed for communication between the Management-
Control entity and the Data plane, such as NETCONF [R. Enns et al. 2011], SNMP [J.D. Case et al.
1990] or OF-Config [ONF 2014]. However, in case of the Controller plane, standard interfaces have
not yet been defined to cope with the requirements of maintenance and management operations. As a
consequence, some of the available SDN tools embed their functions inside the Controller plane. In
other cases, the Controller plane is enhanced with additional interfaces either defined from scratch,
or built on top of existing mechanisms, such as REpresentational State Transfer (REST) [Fielding
and Taylor 2000; Fielding 2000], Advanced Message Queuing Protocol (AMQP) [Vinoski 2006]
(including RabbitMQ [RabbitMQ 2007] and ZeroMQ [ZeroMQ 2007]).

Finally, the NBI provides access to network resources from the Application plane and its imple-
mentation depends on the SDN platform. As this interface can be also used for management pur-
poses, we provide a quick overview of how to implement different SDN tools leveraging the NBIs
of the two most promising open source SDN frameworks at the time, i.e. Open Network Operating
System (ONOS) and OpenDaylight (ODL).

ONOS [Berde et al. 2014]: Monitoring and management of ONOS clusters can be performed
either via Java interface [ON.Lab 2016c] or REST API [ON.Lab 2016d]. Both interfaces allow to
load and unload application bundles, install and uninstall flow rules, obtain the topology, manage
devices, etc. Higher level management interfaces include a web GUI and the ONOS CLI [ON.Lab
2016a], an extension of Karaf’s CLI built on top of the ONOS Java interface.
Like the CLI, other tools such as debuggers, resource managers, loggers can make use of ONOS
interfaces to implement their functions. Especially the Java API allows the implementation of mod-
ules for different layers of the ONOS architecture. For instance, debuggers may need to inspect the
NBI. In this case the Java API provides interfaces such as FlowRuleService, PacketService to get
all messages generated or received by the running applications. Similarly, resource managers can
access traffic or other statistics through the FlowRuleService or the DeviceService, moreover they
can also extend the distributed storage of ONOS to record such statistics with the StorageService.
However, in some cases even such rich APIs are not sufficient. For instance, a logger willing to in-
spect the SBIs (e.g. getting OF or NETCONF messages) would need direct access of the Providers
components, but they do not implement the necessary interfaces. Another example is the compo-
sition mechanism currently investigated and developed by authors of one of the ONOS feature
proposals [ON.Lab 2016b]. In this case, they make use of existing ONOS interfaces, such as the
FlowRuleService, to receive flow rules from applications. However, they also need to extend the
FlowRuleManager component in order to add missing interfaces or to re-program the flow tables.

ODL [Medved et al. 2014]: Monitoring and management in ODL can be performed via RESTful
API or via Java APIs generated from Yang [Bjorklund 2010] models. Such APIs are exposed by
the Service Adaptation Layer (SAL) to allow developers to implement network applications and
plugins (consumers) and connects the consumers to appropriate modules providing services (data
providers). Some of the most relevant APIs (in the context of network management) that the ODL
core projects expose are: Topology to access the network graph containing edges, nodes and their
properties, Flow Programmer to configure flow entries on the network elements, Statistics to retrieve
statistics of flow entries and network elements, and Switch Manager which exposes the elements of
the underlying network, listing their ports and properties.
Accordingly, ODL imposes no limitation to implement interfaces with various SDN tools as far
as the model is designed. However, this freedom causes the creation of different custom APIs in
the end. Consensus in this regard would help building some APIs as the foundations that could be
reused afterward by any SDN tool for ODL.

In the next chapters, we analyze state-of-the-art SDN tools paying special attention to the inter-
faces they implement. The focus of this survey is to obtain a conclusion regarding the maturity of
the Management-Control entity based on that analysis.

ACM Computing Surveys, Vol. 0, No. 0, Article 0, Publication date: 0.

Are we ready to drive Software Defined Networks? A Comprehensive Survey on Management Tools and Techniques0:5

3. COMPOSITION OF NETWORK APPLICATIONS
One of the emerging problems in SDN is the heterogeneity regarding network applications, which
include SDN applications and services. The idea behind the composition of network applications
is to run multiple SDN applications in parallel on the same network, independently of their origin.
Composition also involves conflict detection and resolution. The result is a global network policy.

Traditionally, network policy management is done manually (network administrators translate
high level network policies into low level network configuration commands) and policy changes
take a long time to plan and implement. Therefore, problems are typically detected only at run-time
when users unexpectedly lose connectivity, security holes are exploited, or applications experience
performance degradation [Prakash et al. 2015].

Thus, the objective of composition of network applications is twofold: (i) to allow the coexistence
and cooperation among very heterogeneous control programs and (ii) to plan ahead possible con-
flicts and errors so that they can be detected and solved automatically. To achieve this final objective
we envision the three following steps:

(1) Network partitioning and slicing: Network administrators should be capable of assigning dif-
ferent slices of the network to the different applications they want to deploy in the network. To
achieve this goal, many SDN network hypervisors have already been implemented [Blenk et al.
2015] and we describe the ones related to composition in the following paragraphs.

(2) Prioritization/Ordering among network applications: A second step is the actual assembling
of the outputs from applications that need to be deployed in the same slice of the network.
This requires the definition of criteria and languages, e.g. to define which application has a
higher priority. Many current SDN controller frameworks, such as Floodlight [Floodlight 2016a],
ODL [Medved et al. 2014] and ONOS [Berde et al. 2014], already provide the capability of
defining static priorities for SDN apps to be deployed; however some issues like dynamically
changing the priorities, creating more complex behavior (not based only on those priorities)
or allowing compatibility of different SDN applications from different frameworks still remain
unresolved.

(3) Conflict detection and resolution: The third and final step involves detecting and resolving
conflicts at run-time. We understand as conflicts the uncertainty of having to merge incompatible
policies that resulted from the execution of different SDN applications for the same input, e.g. a
drop and a flood action. Conflict resolution can be understood as an enhancement of assembling
SDN applications that provides different mechanisms or alternatives to be applied when merging,
instead of a single default one.

3.1. Network Partitioning and Slicing approaches
In the SDN domain, FlowVisor [Sherwood et al. 2010] can be considered as the first approach to
allow multiple network controllers to run side-by-side on top of the same network infrastructure.
Instead of allowing all controllers to share the same traffic, FlowVisor partitions the network into
smaller slices and gives each controller only the view of its own slice of the network. To achieve this
goal, it sits as a centralized module between the network and the SDN controllers. FlowVisor was
the first network virtualization hypervisor for SDN, introducing the concept of slicing the networks;
many other hypervisors are built based on it and are documented in a comprehensive survey on SDN
hypervisors [Blenk et al. 2015]. A followup to FlowVisor is OpenVirteX [Al-Shabibi et al. 2014],
which introduces the concept of virtual topologies.These two approaches do not cover the scenario
where network controllers cooperate to control the same the traffic, therefore they do not implement
any assembling or conflict resolution mechanisms.

3.2. Composition approaches
The most relevant works on composition of network applications are based on two basic operators.
One is the parallel operator, where new flow events (e.g. PACKET IN for OF) are relayed to all
applications in parallel by the composition component and the resulting actions are then assembled

ACM Computing Surveys, Vol. 0, No. 0, Article 0, Publication date: 0.

0:6 E. Rojas et al.

and applied to the network. The second is the sequential operator, where events are sent to applica-
tions one after another in a previously defined chain. The resulting actions from one application are
merged with the event and then sent to the next controller. Almost all approaches for composition
allow arbitrary combinations of these two basic operators. The parallel operator for composition of
SDN applications was originally introduced by Frenetic [Foster et al. 2010], a high-level language
for OF networks. Similar to Frenetic, NetKAT [Anderson et al. 2014] is a network programming
language based on the so-called Kleene algebra that defines union and sequential operators plus the
Kleene star operator to iterate applications. Grounded on Frenetic, Pyretic [Monsanto et al. 2013]
is a domain-specific language embedded in Python that aims at enabling network programmers
to develop SDN applications by leveraging on high-level abstractions. Pyretic enhances Frenetic
by introducing (i) the sequential composition, that allows one application’s module to operate on
the packets already processed by another module and (ii) the concept of topology abstraction, that
allows the programmers to limit each module’s sphere of influence. Pyretic applications can be exe-
cuted on top of a modified version of POX [GitHub 2011]. As the Pyretic’s interpreter communicates
with POX through a socket-based API, it can potentially run on top of any controller platform.

Redactor [Wang et al. 2016a] bases its architecture on the declarative programming language
Prolog, used to write the SDN modules. Redactor uses a heuristic approach to resolve conflicts.
These modules can be integrated with the Prolog engine in existing controllers afterward.

Based on OpenVirtex, CoVisor [Jin et al. 2015] acts as a hypervisor and is placed between the
network and multiple controllers. CoVisor speaks OF on both SBI (with the network) and NBI
(with the guest controllers). The main goal of CoVisor is to allow applications written for different
controller platforms and in different programming languages to cooperate on controlling the same
network traffic. In order to achieve this goal, CoVisor defines operators to combine policies of ap-
plications running on multiple controllers to produce a single flow table for each physical switch.
Moreover, CoVisor exposes a virtual view of the topology to each controller and to the applications
running on top of it. These topologies can be very simple, like a one switch topology for a firewall,
can provide a “big virtual switch” abstraction, or can mirror the real network for routing applica-
tions. In summary, CoVisor assembles the policies of individual applications, written for a virtual
network, into a composed policy for the virtual network. Then, it compiles the “virtual” policies
into a single one for the physical network. Even though CoVisor came out when OF 1.3 was well
established, it only supports OF version 1.0.

NetIDE [Schwabe et al. 2016] provides a run-time Network Engine that allows the composition
of multiple network applications from different controllers. The semantics are similar to the ones
defined in CoVisor, but NetIDE differs from it in the following aspects: (i) the connection to the
network is performed via an SDN platform (e.g. ODL or ONOS) instead of leveraging OpenVirtex,
(ii) it supportsOF 1.0 and 1.3, and potentially other protocols such as NETCONF, and (iii) apart
from assembling applications, it handles and resolves possible conflicts between them.

Another SDN hypervisor is FlowBricks [Dixit et al. 2014]. It is a framework that integrates het-
erogeneous controllers using only the standardized controller to switch communication protocol.
While CoVisor only works with OF 1.0, FlowBricks is designed to support up to OF 1.4 and cur-
rently supports all OF 1.1 datapath features, so FlowBricks can work with multiple flow tables, for
instance. Similarly to CoVisor, a policy definition configured on FlowBricks specifies how services
from controllers are applied to traffic on the datapath. FlowBricks runs on an emulated environment
with heavy hacks on the OF switches and cannot be used over standard network hardware.

Corybantic [Mogul et al. 2013] supports composition of network applications by resolving con-
flicts over specific OF rules. Corybantic acts as a module orchestrator, where modules are applica-
tions that implement particular network functions and their impact to the network is evaluated in
terms of cost and benefits. The Corybantic Coordinator implements an iterative approach to evalu-
ate the admission on execution of a particular module. Each round of the iteration is divided in four
phases: (i) modules propose changes in the network, (ii) each module evaluates its own proposals in
term of cost and benefits, (iii) the Coordinator picks the best proposal and (iv) the modules install the
chosen proposal onto the network. Its main disadvantage is that it does not allow the use of different

ACM Computing Surveys, Vol. 0, No. 0, Article 0, Publication date: 0.

Are we ready to drive Software Defined Networks? A Comprehensive Survey on Management Tools and Techniques0:7

Table I. Comparison table of the different composition approaches

Approaches
Properties Description Type (Levels of composition) Applications InterfaceSlicing Ordering Conflict are modified

FlowVisor Composition defined by users X No OpenFlow 1.0
OpenVirteX Composition defined by users X No OpenFlow 1.0

CoVisor Composition defined by users X No OpenFlow 1.0
NetIDE Composition defined by users X X No OpenFlow 1.0+, NETCONF, etc.

FlowBricks Composition defined by users X Yes OpenFlow (modified)
NetKAT Union of all statements X* X † - Programming language
Frenetic Union of all statements X † - Programming language
Pyretic Union of all statements X † - Programming language, Custom API

Redactor Heuristic composition X X - Programming language, Custom API
Statesman Automatic, with invariant checks X X - Custom API
Corybantic Modules scores proposals X X - Custom API

Athens Modules scores proposals X X - Custom API
PGA Automatic X X X - Custom policy language

−: Means not applicable.
∗: NetKAT supports slices in its programming language, but not multiple apps running at the same time.
†: The semantic of these programming languages specifies how the operators that assemble policies are resolved, so a conflict in the sense of the other approaches is
not possible. A compiler can issue warnings when one policy is ignored in a union.

languages and controller platforms, as CoVisor does, and it requires the specific implementation of
the modules to be coordinated.

Like Corybantic, Statesman [Sun et al. 2014] composes network applications by resolving con-
flicts. Statesman defines three views of the network: observed state, proposed state and target state.
To prevent conflicts, applications cannot change the state of the network directly. Instead, each ap-
plication suggests a state to Stateman, in charge of merging (or rejecting) the individual proposals
from applications.

The goal of Athens [AuYoung et al. 2014] is to ease the coordination and the automatic manage-
ment of resource conflicts between SDN and cloud controller applications. It proposes a revision of
the Corybantic design, but it is essentially a compromise between Corybantic and Statesman, pre-
sented above. Basically, Athens sends the current state of the network to each application module.
As a reply, all modules synchronously send to the Athens coordinator a set of proposed changes.
After that, Athens asks each module to evaluate all proposals (by using the same evaluation method
proposed by Corybantic). Based on the evaluation feedback, Athens runs its conflict resolution al-
gorithm to elect the winning proposal, which is eventually implemented onto the network.

Policy Graph Abstraction (PGA) [Prakash et al. 2015] leverages graph–based and “one big
switch” abstraction to detect and resolve policy conflicts. The Graph Composer entity generates a
conflict-free graph from the input policies, previously provided as graphs. This entity also prompts
warnings and errors, suggesting possible fixes. An initial prototype of PGA leverages VeriFlow
[Khurshid et al. 2012] to verify whether the policies in the composed graph are correctly realized
on the network.

3.3. Summary of the different composition approaches
Table I summarizes and compares the composition approaches, based on:

— Description: How the composition is specified. This ranges from fully automatic composition to
user-defined composition logic.

— Type (Levels of composition):
— Slicing: Network hypervisors, such as FlowVisor, OpenVirtex, force each application module

to operate on a disjoint subset, or slice, of the traffic.
— Ordering: Multiple application modules can cooperate on processing the same traffic by or-

dering their actions.
— Conflict: It indicates whether the approach considers tackling the detection and resolution of

conflicts between individual policies generated by different application modules.

ACM Computing Surveys, Vol. 0, No. 0, Article 0, Publication date: 0.

0:8 E. Rojas et al.

— Applications are modified: It indicates whether preexisting application modules written for the
OF (or other standards) must be modified in order to meet the requirements of the composition
framework/approach. This categorization is not applicable to approaches that introduce new pro-
gramming languages, as existing applications cannot be reused unless they are totally rewritten
with the new language.

— Interface: APIs used by the framework to implement composition and conflict resolution mecha-
nisms.

3.4. Concluding remarks
Composition of network policies can be executed at different levels of the SDN architecture. Ap-
proaches that focus on the Application plane, such as Pyretic, Frenetic and others, introduce new
programming languages to support the implementation of applications composed by several mod-
ules that jointly manage the network traffic. In particular, the Pyretic interpreter translates the high
level instructions into low level messages for the underlying SDN controller.
Other mechanisms, such as FlowVisor, OpenVirteX, Covisor, NetIDE and FlowBricks, place a
hypervisor between the Data plane and the application modules. Except NetIDE, which aims at
supporting multiple control/management protocols, the others depend on a specific version of the
OpenFlow protocol, which limits their application space.

4. DEBUGGING TOOLS
When we convert network behavior into a software, the first concept that comes into our minds as
a tool is a debugger. As defined in [Rouse 2016], debugging or troubleshooting is the process of
locating and fixing or bypassing bugs (errors) in a computer program code, but also in the engineer-
ing of a hardware device. Debugging a program or hardware device starts with a problem, follows
with the isolation of the source of the problem, and finally ends with fixing the error. By following
this definition, we already foresee two types of SDN debuggers: debuggers for the software or the
SDN applications (control plane) and debuggers for the network device or SDN switch (data plane).
Another classification considers whether a debugger requires the physical network to be deployed
or running (online debuggers), or not (offline debuggers).

In the following sections, we analyze the different state-of-the-art SDN debuggers based on the
first parameter (objective plane). Finally, last section summarizes all of them in a table.

4.1. A brief introduction on model checking
Before starting the analysis, we briefly introduce in this section the concept of model checking, as
many of the tools will refer to it. Model checking is an automatic verification technique for finite
state concurrent systems. It automatically provides complete proofs of correctness. A model checker
systematically explores all possible ways to execute a program (as opposed to testing, which only
executes one path depending on the input data). The process for model-checking a software consists
basically on three steps:

— Modeling: Converts the system into a formalism (e.g. a machine state diagram).
— Specification: Determines the correctness properties to be validated by the Model Checker tool

(e.g. no loops in a SDN network or the existence of black holes2).
— Verification: Validates the correctness properties in the modeled system and offers the outcomes

obtained (whether or not the property is fulfilled in the system).

As all possible cases are taken into consideration and verified, the obtained results are “absolute”,
which means that if the property “no loops in the system” has been validated, the network will
never have a loop. However, the most pronounced disadvantage in this technique is the State Space
Explosion problem, which consists on having a huge state space where the validation of a property
is extremely complex and very costly computationally.

2A black hole is a place in the network where traffic is silently discarded, without informing the source or destination

ACM Computing Surveys, Vol. 0, No. 0, Article 0, Publication date: 0.

Are we ready to drive Software Defined Networks? A Comprehensive Survey on Management Tools and Techniques0:9

4.2. Control plane debugging
NICE [Canini et al. 2012] finds inconsistencies in an SDN application (for instance: black holes in
the network produced by an application running on top of an SDN controller). It creates a model
from the network topology and the network application. Then, it systematically explores the whole
state space of the model and checks the desired correctness properties against it. Eventually, NICE
outputs the property violations found along with the traces to deterministically reproduce them.
NICE addresses the State Space Explosion issue by means of the Symbolic Execution Engine. The
authors consider that the event handlers of the SDN application are the key to explore the whole
state space of the model. These handlers must be triggered in order to exercise the different paths
of the state space. The Symbolic Engine identifies the packets that trigger these events and feed the
network with them. NICE provides a library of correctness properties that can be extended by the
user. It was designed for the NOX SDN controller framework [Gude et al. 2008].

Kuai [Majumdar et al. 2014] verifies that an SDN satisfies a specific property. It aims to be reach
a higher performance than other SDN verificators by using a simplified version of an OpenFlow
switch and using Murphi as the controller language (which implies translating SDN applications
previously to the analysis). However, as a full model checker, it still needs to deal with the state-
space explosion problem.

VeriCon [Ball et al. 2014] verifies that an SDN application satisfies a set of network-wide invari-
ants (desired correctness properties to be validated) in all admissible topologies and for all possible
(infinite) sequences of network events. Unlike NICE [Canini et al. 2012], which creates a finite
state model checking why the tool is considered unsound (it can never prove the absence of errors
in the infinite state SDN application), VeriCon is able to guarantee the absence of errors in SDN
applications or to compute a concrete counterexample where a network-wide invariant is violated.
It verifies that, for every event executed in an arbitrary topology, the SDN application satisfies the
required correctness properties by means of a theorem prover that implements a classical Floyd-
Hoare-Dijkstra deductive verification approach.

Verificare [Skowyra et al. 2014] is a platform built to enable formal verification of SDN
applications. Verificare has three primary components: a modeling language (VML), a set of
formal requirements, and translators for verification tools such as SPIN [Holzmann 2005] or
PRISM [Kwiatkowska et al. 2011]. Users need to translate the SDN application, controller and
network topology into the equivalent VML models, which are later on composed and checked by
Verificare, raising counter-examples if found.

Assertion language for debugging [Beckett et al. 2014] is a language for verifying and debug-
ging SDN applications. Like conventional programming languages, such as C or Python, which
make use of assertions to facilitate finding bugs before the final deployment, the proposed assertion
language supports debugging SDN applications by allowing programmers to annotate them with
C-style assertions. The main contributions of this work are: (i) an assertion-based language to de-
bug and verify dynamic properties of SDN applications and (ii) a verification process that leverages
VeriFlow [Khurshid et al. 2012]. This language has been implemented as a debugging library and
API atop a modified version of VeriFlow [Khurshid et al. 2012]. The evaluation has been performed
in Mininet [Lantz et al. 2010] using Pyretic and POX.

Abstractions for Model Checking SDN Controllers [Sethi et al. 2013] leverages abstraction
techniques to prove the correctness of controllers using model checking. Given a network topology,
the correctness of an SDN application is proven with an arbitrary number of packets. It addresses the
State Space Explosion problem by abstracting the data state and the network state. Such abstractions
are based on keeping only one packet (concrete packet) in the system and on injecting packets
with arbitrary header values (environment packets) in the network. The model size is significantly
reduced as a result. Correctness properties that they validate icnlude: no loops and no black holes
(both checked in very simple topologies). The main limitation of this approach is its poor scalability.

Toolkit for Automated Sdn TEsting (TASTE) [Lebrun et al. 2014] evaluates the feasibility of
the test–driven methodology, inspired by software engineering principles to improve design, con-

ACM Computing Surveys, Vol. 0, No. 0, Article 0, Publication date: 0.

0:10 E. Rojas et al.

figuration and test of SDN. Specifically, the authors propose a methodology for checking the com-
pliance of SDN controllers with given data path requirements (e.g. a data path requirement could
be that all outgoing traffic from a private network must pass through a firewall). Another contri-
bution of [Lebrun et al. 2014] is the definition of a formal language called Data Path Requirement
Language (DPRL) that allows the reproducibility of network tests.

Authors of Kinetic [Kim et al. 2015] propose a domain specific language and an SDN control
system that allows operators to express dynamic network policies in an intuitive way. Kinetic is
implemented as a Pyretic [Monsanto et al. 2013] module and leverages its high-level abstractions
to provide a structured language for expressing network policies in terms of finite state machines
(FSMs). Kinetic also uses the Pyretic’s composition operators to create large FSMs by combining
different smaller ones. The paper reports two different evaluations of Kinetic: (i) a user study to
determine the degree of usability of Kinetic for network operators and (ii) a performance evaluation
in terms of efficiency in compiling policies into flow rules by varying the number of policies, the
size of the network and the rate of events.

Finally, Automated Bug Removal for SDNs [Wu et al. 2017] proposes a method for detecting
and fixing bugs in SDN applications. It specifically focuses in generating automatic fixes for SDN
following the approach of data provenance [Buneman et al. 2001] from databases, which tracks
causality, but generalizing it to SDN. The main drawback is that it requires a customized NBI for
applications (i.e. a specific SDN framework adapted to the approach).

4.3. Data plane debugging
SOFT [Kuzniar et al. 2012] uses the same technique than NICE (symbolic execution). In contrast,
SOFT finds inconsistencies among the implementations of OF agents (software executed in OF
switches). SOFT looks for inconsistencies by comparing the behaviors of OF switches from dif-
ferent vendors that may cause malfunctions in the network. It emulates an SDN controller (Test
harness) capable of injecting symbolic inputs in an OF switch and it looks for a set of inputs which
provoke that an OF agent behaves differently than others. Therefore, it exercises all possible paths
in the software executed in the OF switch. SOFT has been tested using two publicly available OF
agents compatible with the specification 1.0.

Similarly to SOFT, OFLOPS [Rotsos et al. 2012] is a software framework for OF switches eval-
uation. OFLOPS simultaneously emulates an OF controller and the network traffic and lets the
user perform different tests to analyze the capabilities and the performance of OF-enabled software
and hardware switches. OFLOPS is open source and can be bundled with specialized hardware in
the form of the NetFPGA board [Watson et al. 2006] to ensure sub-millisecond-level accuracy of
the measurements. OFLOPS presents the behavior and performance of five OF-enabled devices:
three hardware switches from different vendors, an Open vSwitch-based [Foundation 2016] soft-
ware switch, as well as a NetFPGA-based switch.

OFTest [Floodlight 2016c] is a Python-based test framework maintained by the Project Flood-
light community. OFTest is meant for testing OF switch implementations and their compliance with
the OF specification. OFTest is connected to both the control plane and the data plane of the switch.
It provides a set of basic pre-configured tests which can be extended to cover more complicated test
scenarios.

Similarly to OFTest, Ryu’s OpenFlow Switch Test Tool [Ryu 2012a] also verifies the degree of
compliance of an OpenFlow switch with the OpenFlow specifications. It is integrated in the source
code of the Ryu SDN framework. The basic operation of this tool implies registering a flow or meter
entry, by generating a specific packet and actions, and processing the expected result. Test scenarios
are written in JSON, so that users can easily modify or add new ones.

FlowChecker [Al-Shaer and Al-Haj 2010] detects misconfigurations in OF switches. It enables
network administrators/users to: (i) identify inconsistencies across paths within the same or differ-
ent domains, (ii) validate the correctness of switches’ flow tables and (iii) debug reachability and
security problems. FlowChecker is written in C/C++ and uses the BuDDy library [Cohen 2004] to
encode OF configurations with Binary Decision Diagrams (BDDs) [Akers 1978]. FlowChecker can

ACM Computing Surveys, Vol. 0, No. 0, Article 0, Publication date: 0.

Are we ready to drive Software Defined Networks? A Comprehensive Survey on Management Tools and Techniques0:11

be used integrated within OF applications (as a library) running on top of NOX, or as a stand-alone
tool that runs FlowChecker and communicates with one or multiple controllers by using a dedicated
protocol. In the latter scenario, FlowChecker acts as an independent centralized server application,
also called by authors “Master Controller”, and receives queries from OF controllers in different
domains sliced by the FlowVisor [Sherwood et al. 2010] hypervisor.

VeriSDN [IETF 2013] validates correctness properties (such as the absence of loops). Specifi-
cally, VeriSDN is a framework for the formal verification of SDN scenarios based on the process
algebra called pACSR, which is an extended version of the packet-based Algebra of Communicat-
ing Shared Resources (ACSR) [Brmond-Grgoire et al. 1993], developed for formal verification of
real-time embedded systems and cyber-physical systems.

ATPG (Automatic Test Packet Generation) [Zeng et al. 2012] proposes an automated and system-
atic approach for testing and debugging networks online. ATPG is a framework that automatically
generates packets to: (i) test the liveliness of the underlying network (in terms of availability), (ii)
verify the consistency of the data plane with respect to configuration specifications and (iii) test
performance assertions, such as packet latency. ATPG detects errors by injecting test packets in the
network so that every packet processing rule in the data plane is exercised and every link is tested.
Differently from common techniques used by network operators, such as levaraging the ping com-
mand, ATPG is scalable for large networks and tests all links. ATPG operations are grounded on the
header space network model [Kazemian et al. 2012] and on a packet selection algorithm that com-
putes the minimal set of test packets, so that every forwarding rule can be exercised and covered by
at least one test packet. Finally, a fault localization algorithm determines the failing rules or links.

Similarly to ATPG, BUZZ [Fayaz et al. 2016] is also a model-based framework to test the correct-
ness of network policy implementations. It is specifically focused on expressiveness and scalability,
and it claims to be five orders of magnitude faster than alternative designs. BUZZ has been imple-
mented and evaluated in ODL.

Monocle [Peresini et al. 2015] follows the same principle that ATPG and checks inconsistencies
in the data plane with respect to the control plane. It enhances ATPG as it also works efficiently in
highly dynamic SDN networks, generating probe packets on a millisecond timescale and detecting
misbehaving rules in switches in seconds. It is implemented as a combination of C++ and Python
proxies: Multiplexer, responsible for forwarding PACKET IN/ OUT messages, and Monitor, main
proxy and responsible for tracking the tables, generating the probes and updating the controller.

Following the same approach, VeriDP [Zhang et al. 2016] continuously monitors the control-data
plane consistency, using an abstraction of the control plane called path table, which is incrementally
updated, and packet tagging at the data plane.

Analogously to the ping command, sPing [Tseng et al. 2017] diagnoses the data plane via packet
injection, discovering problems such as: network loops or black holes, and also discovering the link
layer information.

RuleScope [Bu et al. 2016] inspects SDN forwarding, generating probe packets and process-
ing them afterward. While it can leverage packet tracing tools like NetSight (described below),
it provides a series of monitoring applications implementing specific algorithms for detecting and
troubleshooting rule faults. Experiments were performed with the Ryu SDN controller and the Pica8
P-3297 switch.

PathSeer [Aljaedi and Chow 2016] aims to trace packet trajectories in SDN-enabled data centers.
PathSeer leverages OpenFlow to rewrite packet headers so that they contain the ingress port number
of the switches traversed and, thus, the path followed. It claims to be much more scalable than other
approaches, as it does not require to install so many flow rules. Furthermore, probe packets can be
injected at any point of the network instead of depending on specific end points.

PathletTracer [Zhang et al. 2014] debugs multiple L2 paths. It focuses on path tracing, an oper-
ation for SDN troubleshooting that helps the network operators to improve network performance, to
validate if a path is available and to allocate resources optimally. To know which path is traversing
the packet, PathletTracer associates each given path with an identifier and it leverages unused bits

ACM Computing Surveys, Vol. 0, No. 0, Article 0, Publication date: 0.

0:12 E. Rojas et al.

in a packet’s header to carry the identifier across the path. Once a packet arrives to the destination,
PathletTracer decodes the identifier to determine the path traversed.

SDN traceroute [Agarwal et al. 2014] is a packet-tracing tool for measuring paths in SDN net-
works. It leverages the SDN capabilities to overcome the limitations of the well-known tool tracer-
oute, which only provides layer 3 path information as it relies on the time-to-live (TTL) field in
the IP header. SDN traceroute operates regardless of the network layer. It runs as an application
on an SDN controller so that it can install flow rules onto the SDN-enabled switches and listen to
network events. Like traceroute, SDN traceroute injects probe packets to measure network paths.
Its algorithm imposes two restrictions. First, SDN traceroute assumes that it can reserve some bits
of the packet headers exclusively for its use. These bits must not be used when taking forwarding
decisions and must not be modified by any device in the network. Second, SDN traceroute reserves
the highest priority value (32,768 in OF).

sTrace [Wang et al. 2016] is a packet-tracing tool for SDN, but specifically focused on large
multi-domain SDN networks. It considers other tools, such as SDN traceroute, do not scale well
for big networks. sTrace has been implemented for OpenFlow 1.0 and 1.3, and tested with Open
vSwitch and Mininet.

SDN-RADAR [Gheorghe et al. 2015] detects network issues by leveraging SDN to identify the
most probable under-performing links in the network based on service degradation metrics. It is
designed as a run-time application that injects test packets into the network to measure performance
degradations and to calculate the most likely links where faults occurred. It also requires specific
agents running at different locations in the network, which perform periodic measurements.

Netography [Zhao et al. 2016] defines the concept of packet behavior to locate network issues
and find out their root causes. It troubleshoots the network by exporting packet behavior with probes,
focusing on forwarding errors and performance degradation (latency and packet loss).

4.4. Both (control and data) planes debugging
OFf [Durairajan et al. 2014] is a debugging and testing environment for SDN platforms built on
top of fs-sdn [Gupta et al. 2013], a simulation environment for SDN. OFf debugs and tests SDN
applications by providing common features such as breakpoints or variable inspection. It allows
trace replay, which reproduces network activity captured, and report generation, which generates a
report upon changes happening in the topology or in the flow tables. OFf is designed to work with
any controller platform, including POX, ODL and Ryu [Ryu 2012b].

STS [Scott et al. 2013] presents a technique, retrospective causal inference, for automatically
identifying a minimal sequence of inputs that trigger a bug. It also detects equivalent events It has
been applied to five open source SDN control platforms, namely Floodlight, NOX, POX, Pyretic and
ONOS. Also, neither ndb [Handigol et al. 2012b] nor OFRewind (see below) address the problem
of diagnostic information overload: with millions of packets, picking the right subset to debug can
be challenging, and STS programmatically provides the information about what caused the network
to enter an invalid configuration in the first place.

FLOWGUARD [Hu et al. 2014a] is a framework for OF-based networks for detecting and solv-
ing firewall policy violations. The authors argue that monitoring PACKET IN messages is not suffi-
cient to detect all firewall policy violations, since violations can also be induced by proactive instal-
lation of flow rules, by changes of the network state or by some OF actions such as SET FIELD. A
prototype of FLOWGUARD has been implemented for Floodlight and tested against the Floodlight
built-in firewall. Although FLOWGUARD increases the time to inspect the packets with respect to
the firewall, the performance overhead is considered acceptable.

NetPlumber [Kazemian et al. 2013] is a real-time policy checking tool based on Header Space
Analysis (HSA) [Kazemian et al. 2012] (described below), which shares some authors with ATPG
(presented before). NetPlumber sits between the control and data planes, and inspects the control
channel (OF messages) to detect network state changes, thus detecting invariant violations such as:
loops, reachability problems and black holes, and even checking user-defined policies. The Net-
Plumber’s policy checking mechanism is built around the so-called plumbing graph which captures

ACM Computing Surveys, Vol. 0, No. 0, Article 0, Publication date: 0.

Are we ready to drive Software Defined Networks? A Comprehensive Survey on Management Tools and Techniques0:13

all the paths derived by the flow installed on the network. The performance of the graph update
process has been measured for new flow and link up events on three real-world network: the Google
inter-data center WAN, the Stanford University’s backbone and Internet2 [Internet2 2016]. The re-
sults show that NetPlumber takes longer to update the graph when a link is added. Although a link
up/down is usually a rare event, the authors state that NetPlumber is not suitable for networks with
a high link up/down rate such as energy-proportional data center networks [Abts et al. 2010].

VeriFlow [Khurshid et al. 2012] checks the network–wide correctness in real–time. It leverages
SDN to obtain the state of the network by sitting between the SDN controller and the physical
network, checking the validity of network invariants (loops, black holes, path availability, etc.) each
time a new rule is added, removed or modified. VeriFlow confines the verification activities to those
parts of the network whose actions may be influenced by the new update. Thus, it slices the network
into the so-called equivalence classes (EC) which are sets of packets that are subject to the same
forwarding actions throughout the network. The network state is checked only for those ECs that are
affected by the update. VeriFlow represents the network behavior with forwarding graphs, where
nodes are pairs (EC, device) and edges represent a forwarding decision for each (EC, device) pair.
Finally, invariants are specified as verification functions that take the forwarding graphs as input and
that are used to check potential violations of key network invariants. The evaluation demonstrates
that VeriFlow’s verification time is linear with the number of ECs involved in the network update.
Therefore, VeriFlow has difficulty in verifying invariants in real-time when a large number of ECs
is affected by the update (e.g. link failure). VeriFlow was implemented within the NOX controller
and recently founded its own company [Systems 2016].

Libra [Zeng et al. 2014] is a fast, scalable tool to detect loops, black-holes, and other reachabil-
ity failures. It takes as a starting point the modeling approach of NetPlumber, HSA and VeriFlow,
by taking and analyzing a snapshot of the forwarding tables, but it focuses on huge network (tens
of thousands of switches). They consider snapshots might be inconsistent in large networks with
frequent changes to routing state, and they also believe tools should accomplish the performance
requirements of modern data center networks. For this reason, they simplify the analysis by assum-
ing packet forwarding based on longest prefix matching. Once a stable snapshot has been captured,
Libra check its correctness by dividing the task into smaller, parallel operations, computed with
MapReduce [Dean and Ghemawat 2008].

Delta-net [Horn et al. 2017] also competes directly with NetPlumber or VeriFlow, automatically
detecting violations in the network, by following program analysis techniques. It is based on the
observation of similar forwarding behavior of packets through parts of the networks (while previous
works focus on the entire network) and, for this reason, it claims to be ten times faster. It has been
implemented and tested with the SDN-IP application in ONOS.

HSA (Header Space Analysis) [Kazemian et al. 2012] is a protocol-agnostic framework proposed
to identify failures such as reachability failures, forwarding loops, traffic isolation and others. It
consists of a geometric model where packets are points in a network space and the network boxes
are functions that transform points in the defined network space. Moreover, they show how such
a formalism solves the aforementioned network failures in a protocol-agnostic way. Although they
prove how HSA can be implemented online by testing it in the Stanford University’s backbone
network, they do not explicitly mention potential scalability issues. The techniques described above
have been implemented as a library called Header Space Library (Hassel).

SHSA (Stateful Header Space Analysis) [Yang et al. 2016] extends HSA to detect and solve
invariant violations with stateful middleboxes. After testing it in the Stanford University’s backbone
network. Authors claim to reach higher efficiency and scalability than HSA.

Authors of FlowTest [Fayaz and Sekar 2014] argue that existing testing and verification tools for
SDNs often focus only on ensuring that the network meets specific reachability requirements (e.g.,
no black holes, no loops, etc.). However, such tools are not able to handle many data plane functions
(DPF), such as firewalls or load balancers, or complex policy requirements, such as the correct
implementation of service chaining policies. The objective of this work is to define the conceptual

ACM Computing Surveys, Vol. 0, No. 0, Article 0, Publication date: 0.

0:14 E. Rojas et al.

foundations for a data plane testing framework able to tackle stateful and dynamic DPFs, and policy
requirements. FlowTest is designed with three main logical components:

1. Test traffic planner, which generates a test traffic plan, responsible of coordinating the traffic
injectors to generate traffic traces for testing desired properties.

2. Injectors, common hosts connected to the network that run traffic generators or trace injection
software, driven by the planner.

3. The monitoring and validating engines, to monitor and validate the status of the SDN controller
and the data plane.

The authors have implemented an initial prototype of the test traffic planner by using a tool based
on Artificial Intelligence (AI) and called GraphPlan [Blum 2001].

OFRewind [Wundsam et al. 2011] provides network behavior record and replay. OFRewind sits
between the network and the SDN controller, intercepting and modifying the control messages.
While OFRewind takes care of recording and replaying control traffic, it delegates recording and
replaying of data traffic to the DataStore elements locally attached to the SDN switches. When
replaying the control traffic, it emulates an SDN controller toward the SDN switches or, vice-versa.
To record data traffic, OFRewind leverages on the control channel to instruct the SDN switches
to mirror the traffic to the DataStore elements. Vice-versa, the DataStore elements re-inject the
recorded traffic into the network during the replay process.

SDNRacer [El-Hassany et al. 2016] levarages STS to implement a controller-agnostic debugger
for production-grade SDN controllers. It detects invariant violations, being able to describe the
precise sequence of events that caused them (i.e. the exact pairs of read/write events). Differently
from approaches inspecting the control plane, the speed of the analysis in SDNRacer only depends
on the trace size, which is more scalable. SDNRacer has been implemented for POX, Floodlight
and ONOS.

NetSight [Handigol et al. 2014] captures and builds packet histories and makes them available
through an API. A packet history is the route that a packet traverses plus the switch state and header
modifications at each hop. NetSight assembles packet histories into postcards, event records created
whenever a packet traverses a switch. Packet histories can be filtered via a regular-expression-like
language, Packet History Filter (PHF). Leveraging on the aforementioned API and PHF, the au-
thors built four applications on top of NetSight: ndb, netwatch, netshark and nproof, which are
an interactive network debugger, a live network invariant monitor, a network packet history log-
ger and a hierarchical network profiler, respectively. These tools are presented separately in the
following paragraphs. NetSight has been developed in C++ and tested with the following con-
troller frameworks: NOX, POX and RipL-POX [GitHub 2012]. Recently, some of the authors of
NetSight, together with authors of other debugging tools surveyed in this paper, founded Forward
Networks [ForwardNetworks 2016], where the main product is a platform for network assurance.

ndb [Handigol et al. 2012b] is an interactive network debugger which later evolved into the
whole NetSight project. ndb provides interactive debugging features for networks, analogous to
those provided for software programs by the GNU Project Debugger (GDB) [Foundation 1986].
ndb allows developers to detect and debug wrong network behaviors leveraging on packet histories
provided by the NetSight platform. ndb is able to diagnose common bugs such as: reachability
errors, race conditions, incorrect packet modifications.

netwatch is a live network invariant monitor. netwatch allows the operator to specify a network
behavior in form of invariants and it triggers an alarm whenever a packet violates any invariant. The
current supported invariants are: isolation between different groups of hosts, loops, waypoint routing
to catch packets that do not go through a specific waypoint (e.g. a proxy) and max-path-length to
detect paths that exceed a certain length (e.g. the diameter of the network).

netshark is a Wireshark-like [Wireshark 2016] application that allows users to filter the history
of packets. netshark accepts PHF specifications as input and returns the collected packet histories
matching the query. A dissector for Wireshark is provided to analyze the results.

ACM Computing Surveys, Vol. 0, No. 0, Article 0, Publication date: 0.

Are we ready to drive Software Defined Networks? A Comprehensive Survey on Management Tools and Techniques0:15

Table II. Comparison table of the different debugging tools (1/2 - Control and Data planes)

Tools
Properties Description Type

(Targeted plane)

Features
InterfaceExecution

time Modeling Packet
history

Packet
injection

NICE Finding inconsistencies
in SDN applications Control Plane Offline X OpenFlow 1.0

Kuai Finding inconsistencies
in SDN applications Control Plane Offline X OpenFlow 1.0

VeriCon Finding inconsistencies
in SDN applications Control Plane Offline X OpenFlow 1.4

Verificare Formal verification
of SDN applications Control Plane Offline X Custom API

Assertion language
for debugging

Formal verification
of SDN applications Control Plane Offline X Custom API

Abstractions for model
checking SDN contr.

Proving correctness
of SDN controllers Control Plane Offline X Custom API

TASTE Compliance check
of SDN controllers Control Plane Offline X Custom API

Kinetic Formal verification
of SDN applications Control Plane Online X Custom API

Automated Bug
removal for SDN

Provides fixes for
SDN applications Control Plane Online X Custom API

SOFT Finding inconsistencies
in OF agents Data Plane Offline OpenFlow 1.0

OFLOPS Analyzing capabilities
of OF switches Data Plane Offline OpenFlow 1.0

OFTest Compliance check
of OF switches Data Plane Offline X OpenFlow 1.0, 1.1

Ryu’s Switch
Test Tool

Compliance check
of OF switches Data Plane Offline X OpenFlow 1.0, 1.3, 1.4

FlowChecker Detects misconfigurations
in OF switches Data Plane Online X OpenFlow 1.0, Custom API

VeriSDN Formal verification of SDNs Data Plane Online X Custom API

ATPG Consistency of data plane with
control plane (via packet injection) Data Plane Online X X OpenFlow 1.0

BUZZ Consistency of data plane with
control plane (via packet injection) Data Plane Online X X OpenFlow 1.0+

Monocle Consistency of data plane with
control plane (via packet injection) Data Plane Online X X OpenFlow 1.0+

VeriDP Consistency of data plane with
control plane (via packet injection) Data Plane Online X X OpenFlow 1.0+

sPing Inspects SDN behavior
(via packet injection) Data Plane Online X OpenFlow 1.0, 1.3

RuleScope Inspects SDN forwarding
(via packet injection) Data Plane Online X OpenFlow 1.0+

PathSeer Inspects SDN forwarding
(via packet injection) Data Plane Online X OpenFlow 1.0+

PathletTracer Inspects SDN forwarding
(without packet injection) Data Plane Online X OpenFlow 1.0

SDN Traceroute Inspects SDN forwarding
(via packet injection) Data Plane Online X X OpenFlow 1.0+

sTrace Inspects SDN forwarding
(via packet injection) Data Plane Online X X OpenFlow 1.0, 1.3

SDN-RADAR Inspects SDN performance
(via packet injection) Data Plane Online X X Custom API

Netography Inspects SDN behavior
(via packet injection) Data Plane Online X X Custom API

ACM Computing Surveys, Vol. 0, No. 0, Article 0, Publication date: 0.

0:16 E. Rojas et al.

Table III. Comparison table of the different debugging tools (2/2 - Both planes)

Tools
Properties Description Type

(Targeted plane)

Features
InterfaceExecution

time Modeling Packet
history

Packet
injection

OFf
Debugging and testing

of SDN controllers and switches
(trace replay and breakpoints)

Both Offline X X OpenFlow 1.0+

STS
Debugging and testing

of SDN controllers and switches
(provides right subset to debug)

Both Offline X X OpenFlow 1.0+

FLOWGUARD Detects and solves
firewall policy violations Both Online X OpenFlow 1.0+

NetPlumber Detects and solves invariant
violations (loops, blackholes, etc.) Both Online X OpenFlow 1.0+

VeriFlow Detects and solves invariant
violations (loops, blackholes, etc.) Both Online X OpenFlow 1.0+

Libra Detects and solves invariant
violations (loops, blackholes, etc.) Both Online X OpenFlow 1.0+

Delta-net Detects and solves invariant
violations (loops, blackholes, etc.) Both Online X OpenFlow 1.0+

HSA Detects and solves invariant
violations (loops, blackholes, etc.) Both Online X Custom API

SHSA Detects and solves invariant
violations (loops, blackholes, etc.) Both Online X Custom API

FlowTest Checks correct implementation
of functions and policies Both Online X Custom API

OFRewind Debugging and testing of SDNs
(replay of data and control traffic) Both Online X X OpenFlow 1.0

SDNRacer Debugging and testing of SDNs
(packet histories) Both Online X OpenFlow 1.0+

NetSight Debugging and testing of SDNs
(packet histories) Both Online X Custom API

Finally, nprof is a network profiler and, as such, it will be described in Section 6 devoted to
profilers.

4.5. Summary of the different debugging tools
Tables II and III summarize and compare the different debugging tools, based on:

— Description: Concise description of the tool.
— Type (Targeted plane): Whether analysis and verification focus on the data plane (SDN

switches), the control plane (SDN applications) or both (overall SDN behavior).
— Features:

— Execution time: Two types of tools: offline, which fulfill their purpose when the network is not
being executed, and online, which accomplish their function while the SDN network is running
(either at deployment or at run-time).

— Modeling: This parameter indicates whether the tool creates a model for later verification or
not.

— Packet history: Tools that keep track of the information from the packets that traverse the
network. In some cases, by tracking the traffic crossing a certain point and in other cases by
recording information about nodes traversed by a packet and the modification of its header
fields.

— Packet injection: Tools that meet this parameter inject a certain number of specific packets in
the analyzed network to troubleshoot misbehaviors in the network.

— Interface: The interface required by the tool between control and data planes.

ACM Computing Surveys, Vol. 0, No. 0, Article 0, Publication date: 0.

Are we ready to drive Software Defined Networks? A Comprehensive Survey on Management Tools and Techniques0:17

4.6. Concluding remarks
Debugging tools are the most miscellaneous group of SDN tools. They follow different approaches
and focus on different parts of the SDN architecture. Many tools in this category are based on
OpenFlow and support multiple versions of such protocol, thus they can be used in combination
with most of the popular SDN controller platforms and SDN-enabled switches. However, several
other tools implement custom Application Programming Interfaces (APIs). Those tools urge a deep
analysis on what parts of the SDN they aim to debug and, as a consequence, on how to model a
common interface.

5. MEMORY MANAGEMENT
Memory management is a critical part of any computer Operating System (OS), as it is the process
that controls and coordinates the computer memory to optimize overall system performance. The
terms memory management usually refer to operations such as memory allocation/deallocation, vir-
tualization, protection, mapping and swapping. Like the computer OS, SDN controllers have the
ability to observe and control hardware resources (i.e. network elements) while providing program-
matic interfaces to the applications to access those resources. For these reasons, SDN controllers are
often referred as Network Operating Systems (NOSs). Nevertheless, most of the open source NOSs
available nowadays force the developers of SDN applications to take care of memory management
tasks, like cleaning the memory of the switches from unused flow rules or setting appropriate idle
and hard timeouts to the installed rules. More practically, SDN applications install the forwarding
rules into the switch memory, mainly Ternary Content-Addressable Memory (TCAM). However,
this memory has a finite capacity and allows to accommodate only a few thousand wildcard flow
rules, while recent studies have shown that data centers can have up to 10,000 network flows per
second per server rack today [Benson et al. 2010]. Since TCAMs are power hungry, expensive and
require significant silicon space, increasing their size is not a viable solution to reduce the risk of
reaching the full capacity. In this context, we can divide the memory management operations in two
different categories: (i) deletion of unused flow rules from the switches’ memory and (ii) optimiza-
tion of the memory usage.

5.1. Memory cleaning
A flow rule can be classified as unused for two main reasons: the application that installed the rule
has been deactivated or uninstalled from the NOS or the rule is never matched by the network traf-
fic. Current NOSs do not foresee any mechanism to automatically remove them. Such a behavior is
potentially harmful and may affect the stability of the network; in fact, the rules that have not been
removed may match part of the incoming traffic, thus leading to undesired network actions and
preventing newly installed rules to work properly. Recent NOSs, such as ONOS, implement mech-
anisms to purge entries on a per application basis, despite not automatically, while most controllers
leave this duty to the developers of SDN applications.

The problem of collecting and removing rarely matched flow rules has been tackled by the au-
thors of FRESCO [Shin et al. 2013]. FRESCO is a programming framework for advanced security.
Among other components, FRESCO offers a resource controller that monitors OF devices. The re-
source controller performs two main functions: (i) the switch monitor, periodically collects switch
status information, such as the number of empty flow entries, and stores the collected information in
the switch status table, (ii) the garbage collector checks the switch status table to monitor whether
the flow table in an OF switch is nearing capacity, and then identifies and evicts the least used flow
rules.

The OF specifications [ONF 2013] define two specific mechanisms, namely Eviction and Vacancy
events, which can be used by the developers for the control of the memory utilization to avoid
getting the memory full and the possible service outages that may happen consequently. Eviction
enables the OF switches to automatically eliminate the flow entries of lower importance. Such an
eviction mechanism is handled by the SDN applications that can (i) enable/disable it on a per table

ACM Computing Surveys, Vol. 0, No. 0, Article 0, Publication date: 0.

0:18 E. Rojas et al.

basis and (ii) configure it by setting the importance of each flow entry. Vacancy events introduces
a mechanism enabling the SDN applications to get an early warning based on a capacity threshold
chosen by the SDN developer. This allows the applications to react in advance and avoid the memory
full condition.

5.2. Memory optimization
Despite current NOSs lack of an automatic memory management system, several approaches have
been proposed for an optimal usage of the memory resources (i.e. flow table space) of the network
devices.

The goal of CacheFlow [Katta et al. 2014] is to give network applications the illusion of an arbi-
trarily large switch memory. It is achieved by defining a hardware-software hybrid switch design that
relies on rule caching mechanisms. Architecturally, CacheFlow consists of a component interposed
between the controller and the OF hardware switches. CacheFlow receives the OF commands from
the controller and uses the OF protocol to distribute the rules to the underlying switches. During this
process, CacheFlow selects a set of important rules from among the rules given by the controller to
be cached in the TCAM of the hardware switches, while redirecting the cache misses to the software
switches inside CacheFlow.

The swapping mechanism is one of the two functions of the Memory Management System
(MMS) for SDN controllers proposed in [Marsico et al. 2017]. This mechanism monitors the oc-
cupancy of the TCAM of SDN-enabled switches by intercepting the TABLE FULL OpenFlow
error messages and the TABLE STATUS OpenFlow events with reason VACANCY DOWN. The
TABLE FULL error is used to detect when the TCAM is full, while TABLE STATUS events in-
dicate that the remaining space in the TCAM has decreased below a pre-defined threshold. Based
on this OpenFlow events, the swapping mechanism moves (swaps out) the least used flow entries
from the TCAM of the switches to a database maintained by the MMS. Since the MMS intercepts
all the PACKET IN OpenFlow messages, it automatically (and transparently to the SDN applica-
tions) re-installs (swaps in) the previously swapped out flow entries onto the TCAM when they are
needed again to forward the traffic. The authors implemented the MMS and the swapping mecha-
nism for the ONOS platform by using the Java NBI. However, in another work [Doriguzzi-Corin
et al. 2016b], they provide requirements and specifications for implementing the MMS for other
well-known SDN platforms such as OpenDaylight, Floodlight, Beacon and Ryu.

SmartTime [Vishnoi et al. 2014] employs an adaptive heuristic to compute idle timeouts for the
flow rules. It aims to optimize TCAM utilization (e.g. via eviction of flow rules) and, at the same
time, to reduce the number of table misses (and, as a consequence, the controller load). Its strategy
is based on the following features: a small initial timeout, a rapid ramp up for frequent flows, a
maximum idle timeout, a timeout reduction for short flows that repeat often but after a long gap,
and proactive eviction based on a threshold.

Tag-in-Tag [Banerjee and Kannan 2014] aims at providing a high level compaction of the flow
entries in the TCAM memories and reducing the TCAM power consumption. Tag-In-Tag achieves
these goals by replacing the OF entries stored in the TCAM memories with two layers of tags. One
tag (referred as PATH TAG (PT)) exploits the availability of a unique path for individual flows from
the ingress switch to the egress switch that can be computed a priori. The second one (referred as
FLOW TAG (FT)) allows finer identification of the flows to enable flow specific actions. The Tag-In-
Tag concept is based on commonly observed phenomena of networks: (i) a flow takes a path, (ii) the
paths are deterministic set (all source-destination paths are known a priori) and (iii) multiple flows
can take the same path. Through various experiments, authors show that the Tag-In-Tag approach
can accommodate 15 times more flow entries in a fixed size TCAM whereas power consumption
per-flow is reduced by 80% compared to an “unoptimized” SDN-enabled switch.

Authors of DevoFlow [Curtis et al. 2011] propose a modification of the OF model where part
of the control is delegated back to the switches, while the controller maintains control over only
targeted significant flows. By modifying the action of wildcard rules, it promotes the use of the
exact-match lookup table, thus reducing the use of the TCAM. As this adaptation requires an en-

ACM Computing Surveys, Vol. 0, No. 0, Article 0, Publication date: 0.

Are we ready to drive Software Defined Networks? A Comprehensive Survey on Management Tools and Techniques0:19

Table IV. Comparison table of the different memory management approaches

Approaches
Properties Description Type Mechanism Interface

FRESCO Eviction of the
least used flow rules Memory Cleaning Flow rule eviction FRESCO API

Eviction Eviction of the least
important flow rules Memory Cleaning Flow rule eviction OpenFlow 1.4+

Vacancy Events
Notification when

the TCAM is reaching
full capacity

Memory Cleaning,
Memory Optimization “Memory full” warning OpenFlow 1.4+

CacheFlow Arbitrarily large
virtual flow tables Memory Optimization Flow rule swapping OpenFlow 1.0

MMS Arbitrarily large
virtual flow tables Memory Optimization Flow rule swapping ONOS NBI

SmartTime Heuristic to compute
efficient idle timeouts

Memory Optimization,
Memory Cleaning Idle timeout optimization Floodlight NBI

Tag-in-Tag Replacement of flow
rules with shorter tags Memory Optimization Flow rule compaction N/A

DevoFlow
Leveraging exact

match rules to
save TCAM space

Memory Optimization Flow rule cloning N/A

hancement of the switch devices, DevoFlow was evaluated in a simulated environment. The results
show that DevoFlow uses 10–53 times fewer flow table entries at an average switch, and uses 10–42
times fewer control messages.

5.3. Summary of the different memory management approaches
Table IV summarizes and compares the memory management approaches, based on:

— Description: The basic idea behind the proposed approach, in short.
— Type: Two main categories: memory cleaning and memory optimization. Both have the objective

of saving TCAM memory space for newer rules and of improving the performance of the network.
Memory cleaning includes mechanisms conceived to remove the flow rules that meet certain cri-
teria (e.g. low traffic counters). Mechanisms in the Memory optimization category aim at saving
TCAM space without deleting the rules but improving the way this space is used.

— Mechanism: Brief description of the technical solution proposed by each approach. Eviction
means the action of removing the flow rules from the TCAM memory. Other approaches aim
at saving TCAM space by compacting the rules, by tampering with the idle timeouts of by mov-
ing the rules to a different (often slower) memory. Warnings is a mechanism defined in the OF
specifications v1.4+ (called Vacancy Events) that enables the controller to react in advance before
the TCAM gets full.

— Interface: The interface between the tool and the SDN controller. This information is not available
for Tag-in-Tag and DevoFlow, since such works focus on the description of a mechanism without
providing any concrete implementation detail.

5.4. Concluding remarks
Eviction and vacancy events APIs are available in OpenFlow 1.4 or newer, while CacheFlow only
works in SDN environments based on OpenFlow 1.0. That is, they impose strict constraints on
SDN controllers and SDN-enabled devices. On the other hand, FRESCO, MMS and SmartTime
leverage the NBI of the controller that hosts them. However, although their implementation is based
on different APIs, they require a relatively small set of messages and services to accomplish the
management of the switches’ memory. In summary, such tools need to: (i) be notified on new flow
arrivals, (ii) modify of the switches’ flow table, (iii) collect flow statistics from switches, (iv) receive
flow removal notifications, and (v) receive notifications related to the status of the TCAM capacity.

ACM Computing Surveys, Vol. 0, No. 0, Article 0, Publication date: 0.

0:20 E. Rojas et al.

6. PROFILING
In software engineering the term profiling is known as the performance analysis of a program.
Commonly, profiling a program refers to gather relevant data, such as the execution time or its
memory consumption. The collection of data, as opposed to static code analysis, is carried out while
the program is being executed. A profiler can provide different outcomes including an execution
trace or a statistical summary. Another term used in reference to profiling is monitoring, although
the latter implies a passive behavior and the former an active one, where the current scenario could
be modified based on the gathered information. In this section, a summary of the most relevant
profilers for SDN environments is provided.

OFCBenchmark [Jarschel et al. 2012] is a multi-thread OF controller benchmark tool that an-
alyzes the performance of SDN controller platforms by generating requests for packet forwarding
rules and watching for responses from the controller. It improves Cbench [Sherwood and Yap 2011],
a single-thread benchmarking tool for controller, with improved scalability, modularity and the
ability to provide fine-grained performance statistics. The authors compare OFCBenchmark with
Cbench in terms of performance by measuring the throughput of the NOX controller. Although
OFCBenchmark implements advanced features, its performance results are comparable with the
ones produced by Cbench.

SPIRIT [Kang et al. 2015] is an SDN profiler that automatically discovers bottlenecks in SDN
applications. SPIRIT connects to the NBI of the SDN controller to collect profiling data of the
SDN application under testing. At the same time, SPIRIT records the CPU load of the machine
where the controller is running. The collected data is then analyzed for discovering any critical path
in the execution flow of the SDN application. A prototype of SPIRIT has been implemented as a
proof-of-concept and used to profile Floodlight and ONOS applications.

The NetIDE profiler tackles the problem of profiling SDN environments by leveraging the
NetIDE Network Engine architecture [Doriguzzi-Corin et al. 2016a]. It comprises an Application
profiler and a Network Profiler. The former provides the execution time of network applications at
different granularity levels (from application modules to specific software functions), while the lat-
ter retrieves network statistics such as the current network load. Although the NetIDE profiler uses a
dedicated interface (based on the NetIDE API), it can be potentially used with any control platform
thanks to the adaptors provided by the Network Engine platform. The code is publicly available at
[GitHub 2016].

To better balance the monitoring overhead and the anomaly detection accuracy, the author of
OpenWatch [Zhang 2013] proposes a prediction-based algorithm that dynamically change the gran-
ularity of measurement along both spatial and temporal dimensions. OpenWatch starts by collecting
coarse-grained data from the switches, then the collected information is compared with the data
obtained previously. If an anomaly is detected, it iteratively adjusts the wildcard rules and reports
fine-grained information to the anomaly detection applications. Additionally, in case of anomaly,
the reporting frequency is increased.

nprof: nprof is network profiler included in the NetSight [Handigol et al. 2014] platform (pre-
sented in Section 4.4). It focuses on the data plane and profiles network links to understand the traf-
fic characteristics and routing decisions that determine the link utilization. nprof combines topology
information and packet histories to show which switches are injecting traffic to a specific link and
how much. Furthermore, nprof is able to identify how subsets of traffic are being routed across the
network. This information helps to understand how to distribute the traffic load in the network.

OpenNetMon [van Adrichem et al. 2014] is a passive flow-based monitoring system. It collects
samples of traffic and estimates per-flow QoS metrics such as throughput and packet loss. It is
implemented as a module for the POX controller.

Sonata [Gupta et al. 2016] presents an architecture for refined active monitoring. Sonata allows
operators to express network monitoring queries that are efficiently partitioned among the network
switches, reducing the overall data rate and, therefore, ensuring scalable traffic rates of several

ACM Computing Surveys, Vol. 0, No. 0, Article 0, Publication date: 0.

Are we ready to drive Software Defined Networks? A Comprehensive Survey on Management Tools and Techniques0:21

terabits per second. Sonata’s framework has been implemented in Ryu and OpenFlow 1.3, but is
planned to be extended and optimized with P4 [Bosshart et al. 2014] in the future.

FlowSense [Yu et al. 2013] is a monitoring tool for OF-based networks that takes advantage of the
control channel to provide high accuracy link utilization monitoring with zero measurement cost.
Instead of polling the devices to retrieve traffic statistics, FlowSense relies on OF messages such
as PACKET IN and FLOW REMOVED sent by the switches to the controller. Based on its design,
FlowSense works in reactive OF deployments, where switches generate control messages every
time a new flow arrives or a flow entry expires. On the other hand, there are some scenarios where
the proposed approach fails. For instance, when there is little or no control traffic or when the input
port field is wildcarded.

Payless [Chowdhury et al. 2014] is a network monitoring framework for SDN that operates on
top of the OF controllers, leveraging the controller’s NBI to collect and aggregate network statistics.
Moreover, Payless exposes to applications a uniform and high-level RESTful API for expressing
monitoring requirements. Like FlowSense described above, Payless intercepts PACKET IN and
FLOW REMOVED messages to keep track of flow installations and removals. The authors provide a
comparison between Payless and FlowSense, and they demonstrate that Payless can achieve higher
accuracy of statistics collection than FlowSense. Payless has been implemented as an application
for Floodlight.

Following a similar approach to Payless, PathMon [Wang et al. 2016b] enhances it by providing
the flexibility of querying path-specific flow statistics at any aggregation levels.

SDN Interactive Manager [Heleno Isolani et al. 2015] is an OF-based monitoring software
which: (i) monitors the resource consumption and control channel load, (ii) presents aggregated
statistics and (iii) supports the configuration of network parameters that affect the analyzed metrics.
The SDN Interactive Manager connect to the controller’s RESTful NBI and it is accessible by the
users through a GUI. A prototype of the SDN Interactive Manager has been implemented for the
Floodlight controller.

The work Network State Collection Methods [Aslan and Matrawy 2016] does not introduce
any specific SDN tool. Instead, the authors provide an analysis of active and passive network state
collection mechanisms and their impact on SDN applications. The analysis focuses on OF-based
mechanisms for collecting network state information, which involve the use of the OF API to keep
track of control messages (passive mode) and to collect flow, port or other statistics (active mode).
Through a series of experiments, the authors demonstrate that in case of low-variation traffic, where
flows are comparable in byte counts, the application based on passive state collection performs
better than the one that relied on active state collection. On the other hand, the performance of the
application that relies on active state collection is mainly dependent on the polling periods: as the
polling period increases, the performance degrades.

6.1. Summary of the different profiling tools
Table V summarizes and compares the profiling tools, based on:

— Description: Concise description of the tool.
— Type: Only meaningful for data plane profilers. Active profilers send messages or actively config-

ure the network devices, passive profilers silently monitor the control channel.
— Target: Either data plane or the control plane (controller and SDN applications).
— Interface: The interface between the tool and the SDN controller. This information is not available

for OpenWatch and Network State Collection Methods, since the former focuses on the algorithm
rather that implementing a tool for SDN controllers, the latter presents an overview of active and
passive network state collection mechanisms.

6.2. Concluding remarks
Control plane profilers use the SBI to stress the controller and to measure how they perform when
handling “new flow” messages. This is only partially true for SPIRIT, which also connects to the

ACM Computing Surveys, Vol. 0, No. 0, Article 0, Publication date: 0.

0:22 E. Rojas et al.

Table V. Comparison table of the different profiling tools

Tools
Properties Description Type Target Interface

cbench Benchmarking
of SDN controllers - Control Plane OpenFlow 1.0

OFCBenchmark Benchmarking
of SDN controllers - Control Plane OpenFlow 1.0

SPIRIT SDN application profiler - Control plane Floodlight NBI
ONOS NBI

NetIDE profiler Application monitoring and
data plane statistics collection Active Control and

data planes NetIDE API

OpenWatch Monitoring tool that
balances overhead and accuracy Active Data plane N/A

nprof Link utilization monitor Active Data plane NetSight API
OpenNetMon End-to-end QoS monitor Active Data plane POX NBI

Sonata Optimized network monitoring
queries Active Data plane Sonata API

FlowSense Link utilization monitor Passive Data plane Not specified
controller NBI

Payless Framework that combines
active and passive monitoring Active/Passive Data plane Floodlight NBI

PathMon Path-specific flow statistics
collection Active/Passive Data plane Floodlight NBI

SDN Interactive
Manager

Control channel monitor
Data plane monitor Active/Passive Data Plane Floodlight NBI

Network State
Collection Methods

Analysis of active/passive methods
for monitoring the data plane Active/Passive Data plane N/A

−: Means not applicable.

controller’s NBI to monitor the applications. The NBI of the SDN controller is also used by data
plane profilers to collect statistic counters from the SDN switches or to intercept network events
such as new flow arrivals or flow rule expirations. A different approach is proposed by the NetIDE
profiler, which is potentially compatible with any SDN controller thanks to the NetIDE platform.
An open question remains though: how to effectively profile the network without affecting it?

7. SIMULATORS AND EMULATORS
Network emulators and simulators allow researchers and network practitioners to evaluate the be-
havior of networks when subjected to a given workload. With the introduction of the OpenFlow pro-
tocol, well-known simulators have been extended with additional components to provide support to
OF-based experiments. At the same time, many SDN-enabled emulators have been developed based
on software switches, such as Open vSwitch (OvS) [Foundation 2016], CPqD’s ofsoftswitch13 [Fer-
nandes and Rothenberg 2014] or Indigo Virtual Switch (IVS) [Floodlight 2016b].

Mininet [Lantz et al. 2010] is a network emulator that provides a rapid prototyping workflow for
SDN, by combining lightweight virtualization with an extensible CLI and API on one physical ma-
chine. The different nodes in Mininet are simply shell processes with their own network namespace,
such as interfaces, ports, and routing tables. The switches shaping the network are software-based
OF switches. Once the network is created, Mininet includes a network-aware command line in-
terface (CLI) that allows developers to control and manage the entire network, interacting with it
running commands on hosts, verifying switch operation, and even inducing failures or adjusting link
connectivity. Hosts can also execute any other command installed in the OS and accessible by the
shell. In addition, Mininet provides the opportunity to use a Python API to create custom experi-
ments, topologies, and node types.
As originally implemented, it did not provide any assurance of performance fidelity and then
Mininet-HiFi [Handigol et al. 2012a] improved it. Those enhancements were included from the
release 2.0.0 in Mininet, a major upgrade that expanded Mininet’s scope from functional testing

ACM Computing Surveys, Vol. 0, No. 0, Article 0, Publication date: 0.

Are we ready to drive Software Defined Networks? A Comprehensive Survey on Management Tools and Techniques0:23

to performance testing. Mininet also has a Cluster Edition prototype [Lantz and O’Connor 2015],
although it is considered experimental and MaxiNet (below) is recommended instead. Another clus-
tering examples for Mininet have been also described in Mininet-CE [Antonenko and Smelyanskiy
2013] and DOT (below). Finally, Datacenter in a box [Teixeira et al. 2013] and SDDC [Darabseh
et al. 2015] are two different proposals for an SDN data center experimental framework.

When emulating large networks with both high link bandwidths and high traffic volume, the com-
putational complexity of the emulation overwhelms today’s computers. In this way, MaxiNet [Wette
et al. 2014] fixes those limitations of Mininet, using multiple physical machines for large-scale
SDN emulations. The whole process of mapping and deploying the network to be emulated onto the
physical environment is transparent to the user, since MaxiNet is an abstraction layer connecting
multiple, unmodified Mininet instances running on different workers. A centralized API is provided
for accessing this cluster of Mininet instances and GRE tunnels are used to interconnect nodes em-
ulated on different workers. Therefore, MaxiNet works as a front end for Mininet that sets up all
Mininet instances, invokes commands at the nodes and sets up the tunnels required for proper con-
nectivity. MaxiNet also includes traffic generators: DCT2Gen [Wette and Karl 2015] emulates the
traffic behavior of data centers and netSLS [Wette et al. 2015] combines Hadoop’s Yarn Scheduler
Load Simulator (SLS) [Foundation 2014] with MaxiNet to emulate Hadoop network traffic based
on artificial or real world job traces.

Distributed OF Testbed (DOT) [Roy et al. 2014] proposes a highly scalable emulator for SDN
that provisions the emulated network across a cluster of machines. Unlike Mininet and MaxiNet,
DOT provides guaranteed compute and network resources for the emulated components (such as
switches, hosts and links).

OFNet [Shankar 2016] is an recent SDN emulator that aims to bring the capabilities of Mininet
plus some monitoring and traffic generator tools, as the author considers it is difficult to debug
SDN networks just via pinging, as it is usually done with Mininet. OFNet is an open source project
currently distributed as a virtual machine image, but the code will also be available soon.

Virtual Network Overlay(ViNO) [Bemby et al. 2015] is an orchestration service that creates
arbitrary network topologies with OvS switches and VMs. The overlay interconnection between
VMs is provided through VXLAN encapsulation [Mahalingam et al. 2014]. Similarly to Mininet,
the user can specify the network topology using a Python-based Domain Specific Language (DSL).
Differently from Mininet and MaxiNet, ViNO sits on top of the OpenStack platform and it is par-
ticularly focused on migrating VM containers across heterogeneous platforms with minimal down-
time, especially meaningful for data center networks. For simulating load in servers they use JMeter
[Foundation 1999] in their tests.

EstiNet [Wang et al. 2013] combines the advantages of both simulation and emulation. In a
network simulated by EstiNet, each simulated host can run the real Linux operating system, and
any real application program can run on a simulated host without any modification. The advantage
of the EstiNet’s approach over emulators such as Mininet, is that the controllers can correctly control
the switches based on the simulation clock, which can be faster or slower than the real time. The
authors have used EstiNet to perform functional validation and performance evaluation of several
NOX/POX components and protocols such as the Learning Bridge and the Spanning Tree Protocols.

fs-sdn [Gupta et al. 2013] is a simulator based on the fs [Sommers et al. 2011] simulation platform
that was developed for realistic test and validation of standard networks. fs is a Python-based tool
that uses discrete-event simulation techniques for synthesizing the network measurements and the
measurements it produces are accurate down to the timescale of one second. fs-sdn extends fs by
incorporating the POX controller for prototyping and evaluating SDN-based applications.

OMNeT++ [OpenSim 2001; Varga and Hornig 2008] is a C++ based discrete event simulator
for modeling communication networks, multiprocessors and other distributed or parallel systems.
To simulate SDN environments in OMNeT++, the OF components are integrated using the INET
Framework [Klein and Jarschel 2013], where an OF switch and a basic controller are available, as
well as OF messages, such as: PACKET IN, PACKET OUT or FLOW MOD. OMNeT++ implements
two modular OF nodes: an OF switch, which highlights the separation of the data and the control

ACM Computing Surveys, Vol. 0, No. 0, Article 0, Publication date: 0.

0:24 E. Rojas et al.

Table VI. Comparison table of the different SDN simulators/emulators

Tools
Properties Description Type Scalability Interface

Mininet Open vSwitch-based
SDN network emulator Emulator ∼100 nodes OpenFlow

1.0, 1.2, 1.3

MaxiNet
Mininet-based

large-scale SDN
network emulator

Emulator ∼3200 nodes OpenFlow
1.0, 1.2, 1.3

DOT
Open vSwitch-based

large-scale SDN
network emulator

Emulator Not specified OpenFlow
1.0, 1.3

OFNet
SDN emulator

including
traffic generator

Emulator Not specified
OpenFlow

(version not
specified)

ViNO
Orchestrator

of virtual networks
focused on VM migration

Emulator Not specified Not specified

EstiNet OpenFlow emulator
and simulator Emulator/Simulator Thousands nodes OpenFlow

1.0, 1.3.4

fs-sdn Extension of the
fs simulator Simulator ∼100 nodes POX NBI

OMNeT++
Discrete event
simulator with

OpenFlow support
Simulator Unlimited OpenFlow 1.0

ns-3
Discrete event
simulator with

OpenFlow support
Simulator Unlimited

OpenFlow 0.8.9
(1.3 with third-
party plugins)

plane, and an OF controller, which provides public methods to send OF messages to the connected
OF switch, while the actual controller behavior is implemented in a separate module.

ns-3 [ns 3 2011] is a C++ based discrete event simulator. ns-3 simulations can use OF switches,
which are configurable via OF API and designed to express basic use of the OF protocol by main-
taining virtual flow tables and TCAM memories to provide OF-like results. ns-3 implements its
own OF controller which simulates the behavior of a real controller. External modules can be used
to extend ns-3, such as OFSwitch13 [Chaves 2017] which brings compatibility with OF 1.3.

7.1. Summary of the different simulators and emulators
Table VI summarizes and compares the simulators and emulators, based on:

— Description: Concise description of the tool.
— Type: This parameter classifies the tools in two types, simulators and emulators.
— Scalability: Scalability of the tools in terms of number of nodes simulated/emulated.
— Interface: The interface between the tool and the SDN controller. In case of OMNeT++ and ns-3,

it refers to interfaces between internal OF-enabled nodes simulating controller and switches.

7.2. Concluding remarks
Several emulators have appeared to ease experimentation in the OpenFlow domain. Most of them
support OpenFlow from version 1.0 to version 1.3.4, hence working with most of the SDN con-
trollers available. If we exclude fs-sdn, which incorporates the POX controller to enable OpenFlow
1.0 experiments, the other simulators do not interface with regular SDN controllers. They instead
simulate the SDN controller’s behavior with specific internal modules (or nodes).

8. ARE WE READY TO DRIVE SOFTWARE DEFINED NETWORKS?
Probably the answer is not yet. But this should be considered from an optimistic point of view, as a
motivation to foster research in this area. In this chapter, we briefly summarize the main directions

ACM Computing Surveys, Vol. 0, No. 0, Article 0, Publication date: 0.

Are we ready to drive Software Defined Networks? A Comprehensive Survey on Management Tools and Techniques0:25

to be investigated toward the next generation SDN management framework.

8.1. Immature interfaces
Along the article, we have introduced the concept of SDN tool and discussed its role in the man-
agement of SDN-enabled networks. Together with the classification of the tools, we have analyzed
the interfaces they use to interact with the different planes of the SDN architecture. Specifically,
we have found that the OpenFlow protocol and Controller plane NBIs are the most used interfaces.
However, while the latter approach limits the applicability of the tool to a specific SDN controller
platform (NBIs are not compatible with each others across different platforms), using a SBI such
as OpenFlow as a management interface implies forcing the whole SDN environment (data plane
included) to stick to a specific control protocol. This is particularly questionable when protocols
such as OpenFlow will presumably be substituted in the future by new ones, like P4.

Many other approaches overcome the limitations of existing interfaces by defining custom pro-
tocols and data models, although not generic enough to cover all tools, which proves the lack of
consensus.

Tool design criteria is diverse because the management-control functions are defined quite gener-
ally by the ONF. At the same time, the NBI and SBI are still under evolution. As a result, developers
do not have a clear picture of where to deploy their tools and, furthermore, these developments are
prone to be deprecated as these interfaces (and their associated protocols) are immature or lim-
ited (e.g. OpenFlow still lacks many desirable features). Aside from deciding whether using one or
more interfaces, research on the evolution of these interfaces and their requirements is imperative
for effective and long-lasting management designs.

8.2. The SDN toolbox
Currently, a wide range of SDN tools exist (and we envision more are yet to come). However, they
are being implemented following miscellaneous ideas and requirements, thus associated to specific
architecture models or particular SDN controller platforms. Therefore, most of them can be hardly
adopted in a production environment where the maintenance of the network is a critical task, and
where patching the components of the SDN network to merge the different approaches is usually
not a viable option.

As the reason behind using specific SDN platforms is the interfaces immaturity mentioned pre-
viously, a first step for their evolution could be creating an SDN toolbox to model them. The mo-
tivation is to leave SDN platforms as black boxes (free of implementation or standardization) that
might (or might not) accomplish the definition of these evolved interfaces for management. Simi-
larly, new tools developed might (or might not) follow this design, but at least if they do, they will
be independent and not anchored to a single SDN framework.

After the analysis completed in this survey, we have elaborated a list of tools and minimum
requirements that we consider fundamental for a generalized SDN toolbox, shown in Table VII.
Each parameter is explained in the following:

— Features: Set of the most common features associated with the specific tool. They could be con-
sidered the minimum properties a tool of that type should accomplish.

— Interfaces: Frequently used interfaces leveraged to develop these tools. For the interfaces, we are
pointing at the planes currently defined by the ONF, following the SDN architecture. For example,
an interface in the Data plane would have access to the information related to network devices,
such as flow tables or packets.

— Data models: Communication via the previous SDN interfaces implicitly requires the definition of
the data models that will be exchanged through them. These models aim to represent information
in a standardized way, so that not only the communication is feasible between SDN tools and
platforms, but also among tools from different developers, for example. For instance, OpenFlow
defines a model to represent a packet, but not for network device resources.

ACM Computing Surveys, Vol. 0, No. 0, Article 0, Publication date: 0.

0:26 E. Rojas et al.

Table VII. Generalized list of SDN tools: Features and Requirements

Tools
Properties Features Interfaces Data models Remaining questions

Composition Network slicing
Conflict resolution Control plane Common functionality

primitives
How to move toward

automatic composition?

Debugging
Behavior verification
Checking forwarding

App debugging and fine-tuning

Application, Control
and Data planes

Packet model
Flow table model

How to define a process/flow
for SDN debugging?

Resource management Scalability
Energy consumption Control and Data planes Resource definition

How to define thresholds
for underused/overused

resources?

Profiling Optimization of
network applications Control and Data planes Statistics model

App performance model
How to measure the network

without affecting it?

Simulation Behavior verification
App debugging and fine-tuning

Application and
Control planes

Network app model
SBI protocol model

How to be as close to
real networks as possible?

— Remaining questions: Apart from the interfaces and associated data models to be defined, some
questions are still unanswered and require active investigation.

8.3. Toward the next generation SDN management framework
We envision the following challenges and future research directions for the standardization of the
management functions, to drive and help SDN environments thrive:

(1) Create a generalized list of SDN tools: The reason for this list is to establish a starting point to
work on, as currently the different developments are commingled. We found out that currently
there is not even a clear distinction among types of tools (e.g. some tools with same function-
ality are named differently). Therefore, setting up an initial list would help classifying the re-
quirements and splitting design tasks. Although this survey already introduces an initial list, it
requires further discussion across different standardization groups.

(2) Cooperation among different open source SDN communities: If the most popular open source
SDN frameworks reached an agreement for interfaces and data models, the evolution toward
a standardized management framework would follow easily. To achieve this, the most popular
SDN frameworks (at the time of writing this article, ODL and ONOS) should proactively work
on some common criteria. However, currently they are evolving based on external (independent)
petitions.
For example, ONOS is currently evolving the platform based on work brigades, in which any
community member can participate. If somebody wants to integrate an SDN tool, could do it
by proposing a brigade. But the decisions at this brigade might not be the same if the same
person tries to integrate it in ODL, as their communities are isolated. In fact, this dilemma goes
beyond, as ideally both SDN frameworks could merge if their communities would proactively
communicate, which might occur in the near future.

(3) Coordination with production environments and telcos: Currently, companies applying SDN in
their networks are usually customizing SDN frameworks on their own. An effort should be made
in order to list common requirements for SDN management, so that different SDN communities
could take the token and work together on it.
The problem behind is that usually telcos are unwilling to reveal their products and deployments,
and particularly in this case where SDN is an emergent technology. Furthermore, many compa-
nies still prefer to build (and sell afterward) their own close and opaque solutions, which burdens
the evolution toward a standardized management framework.

9. CONCLUSIONS
In this paper, we provided an overview of the management and operational tool that facilitates the
development, deployment and/or maintenance of SDN-based networks. We started by classifying
the tools based on their features and objectives. Then we presented the current SDN architecture and

ACM Computing Surveys, Vol. 0, No. 0, Article 0, Publication date: 0.

Are we ready to drive Software Defined Networks? A Comprehensive Survey on Management Tools and Techniques0:27

interfaces, and how we envision the role of the tools in it. Afterward, we provided a short descrip-
tion for each tool, a comparison and a conclusion for each category. Finally, we discussed issues,
challenges, and future research directions regarding management in SDN. The joint conclusion is
that management functions in SDN are still set aside as a secondary requirement and, therefore,
they need further standardization efforts in the forthcoming years; particularly the SDN tool concept
should be developed. In the meantime, we expect that this comprehensive survey on management
could guide different stakeholders to understand and evolve the future of SDN management.

ACKNOWLEDGMENTS

This work is partially supported by the following projects: EC FP7 NetIDE [NetIDE 2016] (G.A. 619543), EC H2020
SUPERFLUIDITY (G.A. 671566) and Spanish DRONEXT (G.A. TEC2014-58964-C2-1-R).

REFERENCES
Dennis Abts, Michael R. Marty, Philip M. Wells, Peter Klausler, and Hong Liu. 2010. Energy Proportional Datacenter

Networks. In Proceedings of the 37th Annual International Symposium on Computer Architecture.
Kanak Agarwal, Eric Rozner, Colin Dixon, and John Carter. 2014. SDN Traceroute: Tracing SDN Forwarding Without

Changing Network Behavior. In Proceedings of the Third Workshop on Hot Topics in Software Defined Networking.
S. B. Akers. 1978. Binary Decision Diagrams. IEEE Trans. Comput. 27, 6 (1978), 509–516.
Ali Al-Shabibi, Marc De Leenheer, Matteo Gerola, Ayaka Koshibe, Guru Parulkar, Elio Salvadori, and Bill Snow. 2014.

OpenVirteX: Make your virtual SDNs programmable. In Proceedings of the third workshop on Hot topics in software
defined networking.

Ehab Al-Shaer and Saeed Al-Haj. 2010. FlowChecker: Configuration analysis and verification of federated OpenFlow in-
frastructures. In Proceedings of the 3rd ACM workshop on Assurable and usable security configuration.

Amer Aljaedi and C. Edward Chow. 2016. Pathseer: a centralized tracer of packet trajectories in software-defined datacenter
networks. In 2016 Principles, Systems and Applications of IP Telecommunications (IPTComm). 1–9.

Rodolfo Alvizu, Guido Maier, Navin Kukreja, Achille Pattavina, Roberto Morro, Alessandro Capello, and Carlo Cavazzoni.
2017. Comprehensive survey on T-SDN: Software-defined Networking for Transport Networks. IEEE Communications
Surveys Tutorials PP, 99 (2017), 1–1.

Carolyn Jane Anderson, Nate Foster, Arjun Guha, Jean-Baptiste Jeannin, Dexter Kozen, Cole Schlesinger, and David Walker.
2014. NetKAT: Semantic Foundations for Networks. In Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages.

Vitaly Antonenko and Ruslan Smelyanskiy. 2013. Global Network Modelling Based on Mininet Approach. In Proceedings
of the Second ACM SIGCOMM Workshop on Hot Topics in Software Defined Networking.

M. Aslan and A. Matrawy. 2016. On the Impact of Network State Collection on the Performance of SDN Applications. IEEE
Communications Letters (2016).

Alvin AuYoung, Yadi Ma, Sujata Banerjee, Jeongkeun Lee, Puneet Sharma, Yoshio Turner, Chen Liang, and Jeffrey C.
Mogul. 2014. Democratic Resolution of Resource Conflicts Between SDN Control Programs. In Proceedings of the
10th ACM International on Conference on Emerging Networking Experiments and Technologies.

Thomas Ball, Nikolaj Bjørner, Aaron Gember, Shachar Itzhaky, Aleksandr Karbyshev, Mooly Sagiv, Michael Schapira,
and Asaf Valadarsky. 2014. VeriCon: Towards verifying controller programs in software-defined networks. In ACM
SIGPLAN Notices.

S. Banerjee and K. Kannan. 2014. Tag-In-Tag: Efficient flow table management in SDN switches. In Network and Service
Management (CNSM), 10th International Conference on.

Ryan Beckett, Xuan Kelvin Zou, Shuyuan Zhang, Sharad Malik, Jennifer Rexford, and David Walker. 2014. An Assertion
Language for Debugging SDN Applications. In Proceedings of the Third Workshop on Hot Topics in Software Defined
Networking.

S. Bemby, Hongbin Lu, K.H. Zadeh, H. Bannazadeh, and A. Leon-Garcia. 2015. ViNO: SDN overlay to allow seamless
migration across heterogeneous infrastructure. In Integrated Network Management (IM), 2015 IFIP/IEEE International
Symposium on.

Theophilus Benson, Aditya Akella, and David A. Maltz. 2010. Network Traffic Characteristics of Data Centers in the Wild.
In Proceedings of the 10th ACM SIGCOMM Conference on Internet Measurement.

Pankaj Berde, Matteo Gerola, Jonathan Hart, Yuta Higuchi, Masayoshi Kobayashi, Toshio Koide, Bob Lantz, Brian
O’Connor, Pavlin Radoslavov, William Snow, and Guru Parulkar. 2014. ONOS: Towards an Open, Distributed SDN
OS. In Proceedings of the Third Workshop on Hot Topics in Software Defined Networking.

M. Bjorklund. 2010. YANG - A Data Modeling Language for the Network Configuration Protocol (NETCONF). RFC 6020
(Proposed Standard). (Oct. 2010). http://www.ietf.org/rfc/rfc6020.txt

ACM Computing Surveys, Vol. 0, No. 0, Article 0, Publication date: 0.

0:28 E. Rojas et al.

Andreas Blenk, Arsany Basta, Martin Reisslein, and Wolfgang Kellerer. 2015. Survey on Network Virtualization Hypervisors
for Software Defined Networking. CoRR (2015). http://arxiv.org/abs/1506.07275

Avrim Blum. 2001. Graphplan. (2001). http://www.cs.cmu.edu/∼avrim/graphplan.html
Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer Rexford, Cole Schlesinger, Dan Talayco,

Amin Vahdat, George Varghese, and David Walker. 2014. P4: Programming Protocol-independent Packet Processors.
SIGCOMM Comput. Commun. Rev. 44, 3 (July 2014), 87–95. http://doi.acm.org/10.1145/2656877.2656890

Patrice Brmond-Grgoire, Insup Lee, and Richard Gerber. 1993. ACSR: An algebra of communicating shared resources with
dense time and priorities. In CONCUR’93. Lecture Notes in Computer Science, Vol. 715. Springer Berlin Heidelberg,
417–431.

K. Bu, X. Wen, B. Yang, Y. Chen, L. E. Li, and X. Chen. 2016. Is every flow on the right track?: Inspect SDN forwarding with
RuleScope. In IEEE INFOCOM 2016 - The 35th Annual IEEE International Conference on Computer Communications.
1–9.

Peter Buneman, Sanjeev Khanna, and Tan Wang-Chiew. 2001. Why and Where: A Characterization of Data Provenance.
316–330.

Marco Canini, Daniele Venzano, Peter Peresini, Dejan Kostic, Jennifer Rexford, and others. 2012. A NICE Way to Test
OpenFlow Applications. In NSDI.

Luciano Jerez Chaves. 2017. OpenFlow 1.3 module for ns-3. (2017). http://www.lrc.ic.unicamp.br/ofswitch13/ofswitch13.
pdf

Shubhajit Roy Chowdhury, M Faizul Bari, Rizwan Ahmed, and Raouf Boutaba. 2014. Payless: A low cost network moni-
toring framework for software defined networks. In Network Operations and Management Symposium (NOMS), 2014
IEEE.

Haim Cohen. 2004. The BuDDy Library & Boolean Expressions. (2004). http://www.drdobbs.com/
the-buddy-library-boolean-expressions/184401847

Andrew R. Curtis, Jeffrey C. Mogul, Jean Tourrilhes, Praveen Yalagandula, Puneet Sharma, and Sujata Banerjee. 2011.
DevoFlow: Scaling Flow Management for High-performance Networks. In Proceedings of the ACM SIGCOMM 2011
Conference.

A. Darabseh, M. Al-Ayyoub, Y. Jararweh, E. Benkhelifa, M. Vouk, and A. Rindos. 2015. SDDC: A Software Defined
Datacenter Experimental Framework. In Future Internet of Things and Cloud (FiCloud), 3rd International Conference
on.

Tooska Dargahi, Alberto Caponi, Moreno Ambrosin, Giuseppe Bianchi, and Mauri Conti. 2017. A Survey on the Security of
Stateful SDN Data Planes. IEEE Communications Surveys Tutorials PP, 99 (2017), 1–1.

Jeffrey Dean and Sanjay Ghemawat. 2008. MapReduce: Simplified Data Processing on Large Clusters. Commun. ACM 51,
1 (Jan. 2008), 107–113. http://doi.acm.org/10.1145/1327452.1327492

Abhishek Dixit, Kirill Kogan, and Patrick Eugster. 2014. Composing heterogeneous SDN controllers with Flowbricks. In
Network Protocols (ICNP), 2014 IEEE 22nd International Conference on.

R. Doriguzzi-Corin, P. A. A. Gutierrez, E. Rojas, H. Karl, and E. Salvadori. 2016a. Reusability of software-defined network-
ing applications: A runtime, multi-controller approach. In 2016 12th International Conference on Network and Service
Management (CNSM). 209–215.

Roberto Doriguzzi-Corin, Domenico Siracusa, Elio Salvadori, and Arne Schwabe. 2016b. Empowering Network Operating
Systems with Memory Management Techniques. In Proceedings of the IEEE/IFIP Network Operations and Manage-
ment Symposium.

Ramakrishnan Durairajan, Joel Sommers, and Paul Barford. 2014. Controller-agnostic SDN Debugging. In Proceedings of
the 10th ACM International on Conference on Emerging Networking Experiments and Technologies.

Ahmed El-Hassany, Jeremie Miserez, Pavol Bielik, Laurent Vanbever, and Martin Vechev. 2016. SDNRacer: Concurrency
Analysis for Software-defined Networks. In Proceedings of the 37th ACM SIGPLAN Conference on Programming
Language Design and Implementation. 402–415.

Seyed K Fayaz and Vyas Sekar. 2014. Testing stateful and dynamic data planes with FlowTest. In Proceedings of the third
workshop on Hot topics in software defined networking.

Seyed K. Fayaz, Tianlong Yu, Yoshiaki Tobioka, Sagar Chaki, and Vyas Sekar. 2016. BUZZ: Testing Context-Dependent
Policies in Stateful Networks. In 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI
16). 275–289.

Eder Leao Fernandes and Christian Esteve Rothenberg. 2014. OpenFlow 1.3 Software Switch. Salao de Ferramentas do
XXXII Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuıdos SBRC (2014), 1021–1028.

Roy Thomas Fielding. 2000. Architectural Styles and the Design of Network-based Software Architectures. Ph.D. Disserta-
tion.

Roy T. Fielding and Richard N. Taylor. 2000. Principled Design of the Modern Web Architecture. In Proceedings of the
22Nd International Conference on Software Engineering.

Floodlight. 2016a. Floodlight OpenFlow Controller. (2016). https://floodlight.atlassian.net/wiki/spaces/floodlightcontroller

ACM Computing Surveys, Vol. 0, No. 0, Article 0, Publication date: 0.

Are we ready to drive Software Defined Networks? A Comprehensive Survey on Management Tools and Techniques0:29

Floodlight. 2016b. Indigo Virtual Switch. (2016). https://floodlight.atlassian.net/wiki/display/indigodocs/Indigo+Virtual+
Switch+Documentation

Floodlight. 2016c. OFTest. (2016). https://floodlight.atlassian.net/wiki/spaces/OFTest
ForwardNetworks. 2016. Forward Networks. (2016). https://www.forwardnetworks.com
Nate Foster, Michael J. Freedman, Rob Harrison, Jennifer Rexford, Matthew L. Meola, and David Walker. 2010. Frenetic: A

High-level Language for OpenFlow Networks. In Proceedings of the Workshop on Programmable Routers for Extensible
Services of Tomorrow.

Apache Software Foundation. 1999. Apache JMeter. (1999). http://jmeter.apache.org/
Apache Software Foundation. 2014. Hadoop: Yarn Scheduler Load Simulator (SLS). (2014). https://hadoop.apache.org/docs/

r2.4.1/hadoop-sls/SchedulerLoadSimulator.html
Free Software Foundation. 1986. GDB: The GNU Project Debugger. (1986). https://www.gnu.org/software/gdb/
Linux Foundation. 2016. OvS: Open vSwitch. (2016). http://openvswitch.org/
G. Gheorghe, T. Avanesov, M.-R. Palattella, T. Engel, and C. Popoviciu. 2015. SDN-RADAR: Network troubleshooting

combining user experience and SDN capabilities. In Network Softwarization (NetSoft), 2015 1st IEEE Conference on.
GitHub. 2011. POX Controller. (2011). https://github.com/noxrepo/pox
GitHub. 2012. Ripcord-Lite for POX: A simple network controller for OpenFlow-based data centers. (2012). https://github.

com/brandonheller/riplpox
GitHub. 2016. NetIDE Profiler (GitHub). (2016). https://github.com/fp7-netide/Tools/tree/master/profiler
Ramesh Govindan, Ina Minei, Mahesh Kallahalla, Bikash Koley, and Amin Vahdat. 2016. Evolve or Die: High-Availability

Design Principles Drawn from Google’s Network Infrastructure. In Proceedings of the 2016 ACM SIGCOMM Confer-
ence (SIGCOMM ’16). 58–72.

Natasha Gude, Teemu Koponen, Justin Pettit, Ben Pfaff, Martı́n Casado, Nick McKeown, and Scott Shenker. 2008. NOX:
Towards an Operating System for Networks. SIGCOMM Comput. Commun. Rev. 38, 3 (2008), 105–110.

Arpit Gupta, Rüdiger Birkner, Marco Canini, Nick Feamster, Chris Mac-Stoker, and Walter Willinger. 2016. Network Mon-
itoring As a Streaming Analytics Problem. In Proceedings of the 15th ACM Workshop on Hot Topics in Networks
(HotNets ’16). 106–112. http://doi.acm.org/10.1145/3005745.3005748

Mukta Gupta, Joel Sommers, and Paul Barford. 2013. Fast, Accurate Simulation for SDN Prototyping. In Proceedings of the
Second ACM SIGCOMM Workshop on Hot Topics in Software Defined Networking.

Akram Hakiri, Aniruddha Gokhale, Pascal Berthou, Douglas C. Schmidt, and Thierry Gayraud. 2014. Software-Defined
Networking: Challenges and research opportunities for Future Internet. Computer Networks 75 (2014), 453 – 471.

Nikhil Handigol, Brandon Heller, Vimalkumar Jeyakumar, Bob Lantz, and Nick McKeown. 2012a. Reproducible Network
Experiments Using Container-based Emulation. In Proceedings of the 8th International Conference on Emerging Net-
working Experiments and Technologies.

Nikhil Handigol, Brandon Heller, Vimalkumar Jeyakumar, David Maziéres, and Nick McKeown. 2012b. Where is the De-
bugger for My Software-defined Network?. In Proceedings of the First Workshop on Hot Topics in Software Defined
Networks.

Nikhil Handigol, Brandon Heller, Vimalkumar Jeyakumar, David Mazières, and Nick McKeown. 2014. I Know What Your
Packet Did Last Hop: Using Packet Histories to Troubleshoot Networks. In 11th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 14).

Pedro Heleno Isolani, Juliano Araujo Wickboldt, Cristiano Bonato Both, Juergen Rochol, and Lisandro Zam-
benedetti Granville. 2015. Interactive monitoring, visualization, and configuration of OpenFlow-based SDN. In Inte-
grated Network Management (IM), 2015 IFIP/IEEE International Symposium on.

G. Holzmann. 2005. The SPIN Model Checker: Primer and Reference Manual. Addison-Wesley (2005).
Alex Horn, Ali Kheradmand, and Mukul Prasad. 2017. Delta-net: Real-time Network Verification Using Atoms. In 14th

USENIX Symposium on Networked Systems Design and Implementation (NSDI 17). 735–749.
F. Hu, Q. Hao, and K. Bao. 2014b. A Survey on Software-Defined Network and OpenFlow: From Concept to Implementation.

IEEE Communications Surveys Tutorials 16, 4 (2014), 2181–2206.
Hongxin Hu, Wonkyu Han, Gail-Joon Ahn, and Ziming Zhao. 2014a. FLOWGUARD: Building robust firewalls for software-

defined networks. In Proceedings of the third workshop on Hot topics in software defined networking.
Shufeng Huang and J. Griffioen. 2013. Network Hypervisors: Managing the Emerging SDN Chaos. In Computer Communi-

cations and Networks (ICCCN), 2013 22nd International Conference on.
T. Huang, F. R. Yu, C. Zhang, J. Liu, J. Zhang, and Y. Liu. 2017. A Survey on Large-Scale Software Defined Networking

(SDN) Testbeds: Approaches and Challenges. IEEE Communications Surveys Tutorials 19, 2 (2017), 891–917.
IETF. 2013. VeriSDN: Formal verification for software defined networking (SDN). (2013). https://www.ietf.org/proceedings/

87/slides/slides-87-sdnrg-6.pdf
Internet2. 2016. Internet2 Home Page. (2016). http://www.internet2.edu

ACM Computing Surveys, Vol. 0, No. 0, Article 0, Publication date: 0.

0:30 E. Rojas et al.

Y. Jarraya, T. Madi, and M. Debbabi. 2014. A Survey and a Layered Taxonomy of Software-Defined Networking. IEEE
Communications Surveys Tutorials 16, 4 (2014), 1955–1980.

Michael Jarschel, Frank Lehrieder, Zsolt Magyari, and Rastin Pries. 2012. A flexible OpenFlow-controller benchmark. In
Software Defined Networking (EWSDN), 2012 European Workshop on.

M. Jarschel, T. Zinner, T. Hossfeld, P. Tran-Gia, and W. Kellerer. 2014. Interfaces, attributes, and use cases: A compass for
SDN. Communications Magazine, IEEE 52, 6 (2014), 210–217.

J.D. Case et al. 1990. Simple Network Management Protocol (SNMP). RFC 1157 (Historic). (May 1990). http://www.ietf.
org/rfc/rfc1157.txt

Xin Jin, Jennifer Gossels, Jennifer Rexford, and David Walker. 2015. CoVisor: A Compositional Hypervisor for Software-
Defined Networks. In 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI 15).

H. Kang, S. Lee, C. Lee, C. Yoon, and S. Shin. 2015. SPIRIT: A Framework for Profiling SDN. In 2015 IEEE 23rd Interna-
tional Conference on Network Protocols (ICNP). 417–424. DOI:http://dx.doi.org/10.1109/ICNP.2015.49

Murat Karakus and Arjan Durresi. 2017. A survey: Control plane scalability issues and approaches in Software-Defined
Networking (SDN). Computer Networks 112 (2017), 279 – 293.

Naga Katta, Omid Alipourfard, Jennifer Rexford, and David Walker. 2014. Infinite CacheFlow in Software-defined Net-
works. In Proceedings of the Third Workshop on Hot Topics in Software Defined Networking.

Peyman Kazemian, Michael Chang, Hongyi Zeng, George Varghese, Nick McKeown, and Scott Whyte. 2013. Real Time
Network Policy Checking Using Header Space Analysis. In Presented as part of the 10th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 13).

Peyman Kazemian, George Varghese, and Nick McKeown. 2012. Header Space Analysis: Static Checking for Networks. In
Proceedings of the 9th USENIX Conference on Networked Systems Design and Implementation.

Suleman Khan, Abdullah Gani, Ainuddin Wahid Abdul Wahab, Mohsen Guizani, and Muhammad Khurram Khan. 2017.
Topology Discovery in Software Defined Networks: Threats, Taxonomy, and State-of-the-Art. IEEE Communications
Surveys Tutorials 19, 1 (2017), 303–324.

Suleman Khan, Abdullah Gani, Ainuddin Wahid Abdul Wahab, Ahmed Abdelaziz, Kwangman Ko, Muhammad Khurram
Khan, and Mohsen Guizani. 2016. Software-Defined Network Forensics: Motivation, Potential Locations, Require-
ments, and Challenges. IEEE Network 30, 6 (2016), 6–13.

Ahmed Khurshid, Wenxuan Zhou, Matthew Caesar, and P. Brighten Godfrey. 2012. VeriFlow: Verifying Network-wide
Invariants in Real Time. SIGCOMM Comput. Commun. Rev. 42, 4 (2012), 467–472.

Hyojoon Kim and N. Feamster. 2013. Improving network management with software defined networking. Communications
Magazine, IEEE 51, 2 (2013), 114–119.

Hyojoon Kim, Joshua Reich, Arpit Gupta, Muhammad Shahbaz, Nick Feamster, and Russ Clark. 2015. Kinetic: Verifiable
Dynamic Network Control. In Proceedings of the 12th USENIX Conference on Networked Systems Design and Imple-
mentation.

Dominik Klein and Michael Jarschel. 2013. An OpenFlow Extension for the OMNeT++ INET Framework. In Proceedings
of the 6th International ICST Conference on Simulation Tools and Techniques.

D. Kreutz, F. M. V. Ramos, P. E. Verssimo, C. E. Rothenberg, S. Azodolmolky, and S. Uhlig. 2015. Software-Defined
Networking: A Comprehensive Survey. Proc. IEEE 103, 1 (2015), 14–76.

S. Kuklinski. 2014. Programmable management framework for evolved SDN. In Network Operations and Management
Symposium (NOMS), 2014 IEEE.

Maciej Kuzniar, Peter Peresini, Marco Canini, Daniele Venzano, and Dejan Kostic. 2012. A SOFT way for OpenFlow switch
interoperability testing. In Proceedings of the 8th international conference on Emerging networking experiments and
technologies.

M. Kwiatkowska, G. Norman, and D. Parker. 2011. PRISM 4.0: Verification of Probabilistic Real-time Systems. In 23rd
International Conference on Computer Aided Verification.

Bob Lantz, Brandon Heller, and Nick McKeown. 2010. A Network in a Laptop: Rapid Prototyping for Software-defined
Networks. In Proceedings of the 9th ACM SIGCOMM Workshop on Hot Topics in Networks (Hotnets-IX).

Bob Lantz and Brian O’Connor. 2015. A Mininet-based Virtual Testbed for Distributed SDN Development. In Proceedings
of the 2015 ACM Conference on Special Interest Group on Data Communication.

David Lebrun, Stefano Vissicchio, and Olivier Bonaventure. 2014. Towards Test-Driven Software Defined Networking. In
Network Operations and Management Symposium (NOMS), 2014 IEEE.

M. Mahalingam, D. Dutt, K. Duda, P. Agarwal, L. Kreeger, T. Sridhar, M. Bursell, and C. Wright. 2014. Virtual eXtensible
Local Area Network (VXLAN): A Framework for Overlaying Virtualized Layer 2 Networks over Layer 3 Networks. RFC
7348. RFC Editor. http://www.rfc-editor.org/rfc/rfc7348.txt http://www.rfc-editor.org/rfc/rfc7348.txt.

Rupak Majumdar, Sai Deep Tetali, and Zilong Wang. 2014. Kuai: A model checker for software-defined networks. In 2014
Formal Methods in Computer-Aided Design (FMCAD). 163–170.

ACM Computing Surveys, Vol. 0, No. 0, Article 0, Publication date: 0.

Are we ready to drive Software Defined Networks? A Comprehensive Survey on Management Tools and Techniques0:31

Antonio Marsico, Roberto Doriguzzi-Corin, and Domenico Siracusa. 2017. An Effective Swapping Mechanism to Overcome
the Memory Limitation of SDN Devices. In Proceedings of the IFIP/IEEE International Symposium on Integrated
Network Management.

Rahim Masoudi and Ali Ghaffari. 2016. Software Defined Networks: A survey. Journal of Network and Computer Applica-
tions 67 (2016), 1 – 25.

N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford, S. Shenker, and J. Turner. 2008. Open-
Flow: Enabling Innovation in Campus Networks. ACM SIGCOMM Computer Communication Review 32, 2 (April
2008), 69–74.

J. Medved, R. Varga, A. Tkacik, and K. Gray. 2014. OpenDaylight: Towards a Model-Driven SDN Controller architecture.
In Proceeding of IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks 2014. 1–6.

A. Mendiola, J. Astorga, E. Jacob, and M. Higuero. 2017. A Survey on the Contributions of Software-Defined Networking
to Traffic Engineering. IEEE Communications Surveys Tutorials 19, 2 (2017), 918–953.

Oliver Michel and Eric Keller. 2017. SDN in wide-area networks: A survey. In 2017 Fourth International Conference on
Software Defined Systems (SDS). 37–42.

Jeffrey C. Mogul, Alvin AuYoung, Sujata Banerjee, Lucian Popa, Jeongkeun Lee, Jayaram Mudigonda, Puneet Sharma, and
Yoshio Turner. 2013. Corybantic: Towards the Modular Composition of SDN Control Programs. In Proceedings of the
Twelfth ACM Workshop on Hot Topics in Networks.

Christopher Monsanto, Joshua Reich, Nate Foster, Jennifer Rexford, and David Walker. 2013. Composing Software Defined
Networks. In 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI 13).

G. N. Nde and R. Khondoker. 2016. SDN testing and debugging tools: A survey. In 2016 5th International Conference on
Informatics, Electronics and Vision (ICIEV). 631–635.

NetIDE. 2016. An integrated development environment for portable network applications. (2016). http://www.netide.eu/
ns 3. 2011. ns-3 simulator. (2011). https://www.nsnam.org/
B. A. A. Nunes, M. Mendonca, X. N. Nguyen, K. Obraczka, and T. Turletti. 2014. A Survey of Software-Defined Networking:

Past, Present, and Future of Programmable Networks. IEEE Communications Surveys Tutorials 16, 3 (2014), 1617–
1634.

Yustus Eko Oktian, SangGon Lee, HoonJae Lee, and JunHuy Lam. 2017. Distributed SDN controller system: A survey on
design choice. Computer Networks 121 (2017), 100 – 111.

ONF. 2013. OpenFlow Switch Specification 1.4.0. (2013). https://www.opennetworking.org/images/stories/downloads/
sdn-resources/onf-specifications/openflow/openflow-spec-v1.4.0.pdf

ONF. 2014. OpenFlow Management and Configuration Protocol 1.2. (2014). https://www.opennetworking.org/images/
stories/downloads/sdn-resources/onf-specifications/openflow-config/of-config-1.2.pdf

ONF. 2016. SDN architecture - Issue 1.1. (2016). https://www.opennetworking.org/wp-content/uploads/2014/10/TR-521
SDN Architecture issue 1.1.pdf

ON.Lab. 2016a. ONOS CLI Commands. (2016). https://wiki.onosproject.org/display/ONOS/The+ONOS+CLI
ON.Lab. 2016b. ONOS Composition Mode. (2016). https://wiki.onosproject.org/display/ONOS/Composition+Mode
ON.Lab. 2016c. ONOS Java API. (2016). http://api.onosproject.org/
ON.Lab. 2016d. ONOS REST API. (2016). https://wiki.onosproject.org/display/ONOS/REST
OpenSim. 2001. OMNeT++ Home Page. (2001). https://omnetpp.org/
Peter Peresini, Maciej Kuzniar, and Dejan Kostic. 2015. Monocle: Dynamic, fine-grained data plane monitoring. In Proceed-

ings of the 11th International on Conference on emerging Networking EXperiments and Technologies. ACM.
Chaithan Prakash, Jeongkeun Lee, Yoshio Turner, Joon-Myung Kang, Aditya Akella, Sujata Banerjee, Charles Clark, Yadi

Ma, Puneet Sharma, and Ying Zhang. 2015. PGA: Using Graphs to Express and Automatically Reconcile Network
Policies. In Proceedings of the 2015 ACM Conference on Special Interest Group on Data Communication.

R. Enns et al. 2011. Network Configuration Protocol (NETCONF). RFC 6241 (Proposed Standard). (June 2011). http://www.
ietf.org/rfc/rfc6241.txt

RabbitMQ. 2007. RabbitMQ official website. (2007). https://www.rabbitmq.com/
D. B. Rawat and S. R. Reddy. 2017. Software Defined Networking Architecture, Security and Energy Efficiency: A Survey.

IEEE Communications Surveys Tutorials 19, 1 (2017), 325–346.
Charalampos Rotsos, Nadi Sarrar, Steve Uhlig, Rob Sherwood, and Andrew W Moore. 2012. OFLOPS: An open framework

for OpenFlow switch evaluation. In Passive and Active Measurement.
Margaret Rouse. 2016. Debugging definition. (2016). http://searchsoftwarequality.techtarget.com/definition/debugging
A. R. Roy, M. F. Bari, M. F. Zhani, R. Ahmed, and R. Boutaba. 2014. Design and management of DOT: A Distributed

OpenFlow Testbed. In Network Operations and Management Symposium (NOMS), 2014 IEEE.
Ryu. 2012a. OpenFlow Switch Test Tool. (2012). https://osrg.github.io/ryu-book/en/html/switch test tool.html
Ryu. 2012b. Ryu SDN framework. (2012). http://osrg.github.com/ryu/

ACM Computing Surveys, Vol. 0, No. 0, Article 0, Publication date: 0.

0:32 E. Rojas et al.

Arne Schwabe, Pedro A. Aranda Gutiérrez, and Holger Karl. 2016. Composition of SDN Applications: Options/Challenges
for Real Implementations. In Proceedings of the 2016 Applied Networking Research Workshop (ANRW ’16). 26–31.
DOI:http://dx.doi.org/10.1145/2959424.2959436

Colin Scott, Andreas Wundsam, Sam Whitlock, Andrew Or, Eugene Huang, Kyriakos Zarifis, and Scott Shenker. 2013. How
Did We Get Into This Mess? Isolating Fault-Inducing Inputs to SDN Control Software. Technical Report UCB/EECS-
2013-8. EECS Department, University of California, Berkeley. http://www.eecs.berkeley.edu/Pubs/TechRpts/2013/
EECS-2013-8.html

Divjyot Sethi, Srinivas Narayana, and Sharad Malik. 2013. Abstractions for model checking SDN controllers. In Formal
Methods in Computer-Aided Design (FMCAD), 2013.

Ganesh H. Shankar. 2016. OFNet. (2016). http://sdninsights.org/
Rob Sherwood, Michael Chan, Adam Covington, Glen Gibb, Mario Flajslik, Nikhil Handigol, Te-Yuan Huang, Peyman

Kazemian, Masayoshi Kobayashi, Jad Naous, and others. 2010. Carving research slices out of your production networks
with OpenFlow. ACM SIGCOMM Computer Communication Review 40, 1 (2010), 129–130.

Rob Sherwood and KK Yap. 2011. Cbench controller benchmarker. Last accessed, Nov (2011).
Seungwon Shin, Phillip A Porras, Vinod Yegneswaran, Martin W Fong, Guofei Gu, and Mabry Tyson. 2013. FRESCO: Mod-

ular composable security services for software-defined networks. In Proceedings of the ISOC Network and Distributed
System Security Symposium (NDSS).

Sanjeev Singh and Rakesh Kumar Jha. 2017. A Survey on Software Defined Networking: Architecture for Next Generation
Network. Journal of Network and Systems Management 25, 2 (2017), 321–374.

Richard Skowyra, Andrei Lapets, Azer Bestavros, and Assaf Kfoury. 2014. A Verification Platform for SDN-Enabled Ap-
plications. In Cloud Engineering (IC2E), 2014 IEEE International Conference on.

J. Sommers, R. Bowden, B. Eriksson, P. Barford, M. Roughan, and N. Duffield. 2011. Efficient network-wide flow record
generation. In INFOCOM, 2011 Proceedings IEEE.

Sejun Song, Sungmin Hong, Xinjie Guan, Baek-Young Choi, and Changho Choi. 2013. NEOD: Network Embedded On-line
Disaster management framework for Software Defined Networking. In IM.

Peng Sun, Ratul Mahajan, Jennifer Rexford, Lihua Yuan, Ming Zhang, and Ahsan Arefin. 2014. A Network-state Manage-
ment Service. In Proceedings of the 2014 ACM Conference on SIGCOMM.

Veriflow Systems. 2016. Veriflow. (2016). http://www.veriflow.net/
J. Teixeira, G. Antichi, D. Adami, A. Del Chiaro, S. Giordano, and A. Santos. 2013. Datacenter in a Box: Test Your SDN

Cloud-Datacenter Controller at Home. In Software Defined Networks (EWSDN), 2013 Second European Workshop on.
Fan-Hsun Tseng, Kai-Di Chang, Shang-Chuan Liao, Han-Chieh Chao, and Victor C.M. Leung. 2017. sPing: a user-centred

debugging mechanism for software defined networks. IET Networks 6 (March 2017), 39–46(7). Issue 2.
Mehmet Fatih Tuysuz, Zekiye Kubra Ankarali, and Didem Gzpek. 2017. A survey on energy efficiency in software defined

networks. Computer Networks 113 (2017), 188 – 204.
N. L. M. van Adrichem, C. Doerr, and F. A. Kuipers. 2014. OpenNetMon: Network monitoring in OpenFlow Software-

Defined Networks. In 2014 IEEE Network Operations and Management Symposium (NOMS). 1–8.
András Varga and Rudolf Hornig. 2008. An Overview of the OMNeT++ Simulation Environment. In Proceedings of the 1st

International Conference on Simulation Tools and Techniques for Communications, Networks and Systems & Work-
shops.

S. Vinoski. 2006. Advanced Message Queuing Protocol. Internet Computing, IEEE 10, 6 (2006), 87–89.
Anilkumar Vishnoi, Rishabh Poddar, Vijay Mann, and Suparna Bhattacharya. 2014. Effective Switch Memory Management

in OpenFlow Networks. In Proceedings of the 8th ACM International Conference on Distributed Event-Based Systems.
Ming-Hung Wang, Shao-You Wu, Li-Hsing Yen, and Chien-Chao Tseng. 2016b. PathMon: Path-specific traffic monitoring in

OpenFlow-enabled networks. In 2016 Eighth International Conference on Ubiquitous and Future Networks (ICUFN).
775–780.

Shie-Yuan Wang, Chih-Liang Chou, and Chun-Ming Yang. 2013. EstiNet openflow network simulator and emulator. Com-
munications Magazine, IEEE 51, 9 (September 2013), 110–117.

Wen Wang, Wenbo He, and Jinshu Su. 2016a. Redactor: Reconcile network control with declarative control programs in
SDN. In 2016 IEEE 24th International Conference on Network Protocols (ICNP). 1–10.

Yangyang Wang, Jun Bi, and Keyao Zhang. 2016. A tool for tracing network data plane via SDN/OpenFlow. Science China
Information Sciences 60, 2 (2016).

G. Watson, N. McKeown, and M. Casado. 2006. NetFPGA: A tool for network research and education. In Workshop on
Architecture Research using FPGA Platforms.

P. Wette, M. Draxler, A. Schwabe, F. Wallaschek, M.H. Zahraee, and H. Karl. 2014. MaxiNet: Distributed emulation of
software-defined networks. In Networking Conference, 2014 IFIP.

Philip Wette and Holger Karl. 2015. DCT2Gen: A traffic generator for data centers. Computer Communications (2015).

ACM Computing Surveys, Vol. 0, No. 0, Article 0, Publication date: 0.

Are we ready to drive Software Defined Networks? A Comprehensive Survey on Management Tools and Techniques0:33

Philip Wette, Arne Schwabe, Malte Splietker, and Holger Karl. 2015. Extending Hadoop’s Yarn Scheduler Load Simulator
with a highly realistic network & traffic model. In Proceedings of the 2015 1st IEEE Conference on Network Soft-
warization (NetSoft). 1–2.

J. Wickboldt, W. De Jesus, P. Isolani, C. Both, J. Rochol, and L. Granville. 2015. Software-defined networking: management
requirements and challenges. Communications Magazine, IEEE 53, 1 (2015), 278–285.

Wireshark. 2016. Wireshark. (2016). http://wireshark.org
Yang Wu, Ang Chen, Andreas Haeberlen, Wenchao Zhou, and Boon Thau Loo. 2017. Automated Bug Removal for Software-

Defined Networks. In 14th USENIX Symposium on Networked Systems Design and Implementation (NSDI 17). 719–
733.

Andreas Wundsam, Dan Levin, Srini Seetharaman, and Anja Feldmann. 2011. OFRewind: Enabling Record and Replay
Troubleshooting for Networks. In Proceedings of the 2011 USENIX Conference on USENIX Annual Technical Confer-
ence.

W. Xia, Y. Wen, C. H. Foh, D. Niyato, and H. Xie. 2015. A Survey on Software-Defined Networking. IEEE Communications
Surveys Tutorials 17, 1 (2015), 27–51.

Yufan Yang, Xinlin Huang, Shang Cheng, Shiyun Chen, and Peijin Cong. 2016. SHSA: A Method of Network Verification
with Stateful Header Space Analysis. In 2016 IEEE 22nd International Conference on Parallel and Distributed Systems
(ICPADS). 232–238.

Curtis Yu, Cristian Lumezanu, Yueping Zhang, Vishal Singh, Guofei Jiang, and Harsha V Madhyastha. 2013. Flowsense:
Monitoring network utilization with zero measurement cost. In Proceedings of Passive and Active Measurement Con-
ference.

Hongyi Zeng, Peyman Kazemian, George Varghese, and Nick McKeown. 2012. Automatic Test Packet Generation. In Pro-
ceedings of the 8th International Conference on Emerging Networking Experiments and Technologies.

Hongyi Zeng, Shidong Zhang, Fei Ye, Vimalkumar Jeyakumar, Mickey Ju, Junda Liu, Nick McKeown, and Amin Vahdat.
2014. Libra: Divide and Conquer to Verify Forwarding Tables in Huge Networks. In 11th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 14). 87–99.

ZeroMQ. 2007. ZeroMQ official website. (2007). http://zeromq.org/
Hui Zhang, Cristian Lumezanu, Junghwan Rhee, Nipun Arora, Qiang Xu, and Guofei Jiang. 2014. Enabling Layer 2 Pathlet

Tracing Through Context Encoding in Software-defined Networking. In Proceedings of the Third Workshop on Hot
Topics in Software Defined Networking.

Peng Zhang, Hao Li, Chengchen Hu, Liujia Hu, Lei Xiong, Ruilong Wang, and Yuemei Zhang. 2016. Mind the Gap: Moni-
toring the Control-Data Plane Consistency in Software Defined Networks. In Proceedings of the 12th International on
Conference on emerging Networking EXperiments and Technologies. ACM, 19–33.

Ying Zhang. 2013. An adaptive flow counting method for anomaly detection in SDN. In Proceedings of the ninth ACM
conference on Emerging networking experiments and technologies.

Yusu Zhao, Pengfei Zhang, and Yaohui Jin. 2016. Netography: Troubleshoot your network with packet behavior in SDN. In
NOMS 2016 - 2016 IEEE/IFIP Network Operations and Management Symposium. 878–882.

Received ...; revised ...; accepted ...

ACM Computing Surveys, Vol. 0, No. 0, Article 0, Publication date: 0.

