
Minimizing Downtimes: Using Dynamic
Reconfiguration and State Management in SDN

Arne Schwabe
University of Paderborn

Email: arne.schwabe@uni-paderborn.de

Elisa Rojas
Telcaria Ideas S.L.

Email: elisa.rojas@telcaria.com

Holger Karl
University of Paderborn

Email: holger.karl@uni-paderborn.de

Abstract—Software-Defined Networks (SDN) are constantly
evolving and so is their software. One of the key advantages of
SDN over traditional networks is the ability to rapidly develop
and deploy new features. However, updating them often requires
restarting the SDN controller and causes network downtime.

In addition to such planned updates, unforeseen, accidental
downtime is also a risk for SDN networks. While commercialized
SDN controllers are adding mechanisms to deal with both
planned and accidental downtime, they still are not competitive
with conventional approaches, which typically use redundant
hardware and special software to address these problems.

In this paper we investigate how these two challenges to SDN
can be addressed with dynamic reconfiguration and show how the
state of the network can be managed by reconfiguration. Finally,
we present a proof-of-concept implementation of our approach.

I. INTRODUCTION

Conventional networks consist of dedicated hardware
switches and proprietary software (firmware) running on them.
The choice of software is limited; most times only one software
image is available. Even if multiple software versions are
available, the choice is usually small and license-driven (like
“basic IP” and “advanced services”); changing licensing is rare.
Software upgrades also happen rarely and are supported by
specialized routines so that service is not interrupted. Typically,
software is upgraded on a standby supervisor engine; then state
is transferred; then the active engine is switched.

In this world of fixed components and monolithic software
images, the need or even potential to change the running
software does not exist. The user cannot simply exchange
one part of the software, be it for the addition of features or
to solve a problem with the code of that part of the software.

In stark contrast to that, SDN controllers, rather than having
a monolithic software image, are typically composed of multiple
modules (also called “apps”). Changing the composition of
the modules –or also the modules themselves– is much more
dynamic than in conventional scenarios. For example, since
modules may come from different vendors, stability might be
different and sometimes not ideal, requiring frequent tests
and reconfigurations. Also, the interaction of the module
composition might not have been tested at all and have issues
that only manifest in this specific scenario. A controller restart,
without a scheduled maintenance, to change or reinitialize the
software is in most environments not an acceptable solution as
it causes network downtime and intermediate failures.

Instead of treating the volatility of SDN controllers as a risk
and a problem, we believe that this is a strength that can be

capitalized on by introducing dynamic reconfiguration at run-
time as a core component in an SDN deployment. Rather than
having to stop/start the whole system, dynamic reconfiguration
enables to only restart the modified parts of the system and
can minimize the effects of restarts even further.

In this paper, we consider existing solutions and approaches
to dynamic reconfiguration. First of all, we analyze related
work (Section II). Secondly, we collect requirements of a
dynamic reconfiguration in the context of SDN (Section III).
We discuss how to fulfill these requirements by showing how
malfunctioning modules can be detected (Section IV-D) and
handled (Section IV-E). From the behavior in the unexpected
case we develop dynamic reconfiguration behavior for a sched-
uled or manual reconfiguration in Section IV-F. After that, we
present our specification language for dynamic reconfiguration
in Section V and evaluate our implementation in Section VI
and give a final conclusion in the last section.

II. RELATED WORK

SDN controllers help to break monolithic software into
pieces or “apps”. Controllers are usually single-language
design and to synchronize their apps, they leverage dynamic
frameworks already developed for their specific language.

The OSGi [?] technology componentizes software modules
and applications, for the the Java programming language. OSGi
allows applications or components (so-called bundles) to be
remotely installed, started, stopped, updated, and uninstalled
without requiring a reboot, which is not feasible in standalone
Java environments. For example, Apache Felix [?] implements
the OSGi framework and service platform in a basic form. It
is extended by Apache Karaf [?], providing some additional
features on top of a standard OSGi implementation, such as
folder-based hot deployment, remote SSH access to the console,
or centralized logging. Additionally, iPOPO [?], based on Pelix,
is an OSGi dynamic service platform written in Python, and
Apache Celix [?] is an implementation of the OSGi specification
adapted to C. These OSGi frameworks provide the programmer
an environment to implement mechanisms that act on updating
or crashing of a component.

Currently, there are two SDN frameworks based on OSGi
and Karaf: OpenDaylight (ODL) [?] and Open Network
Operating System (ONOS) [?]. ODL is based on a Model-
Driven Service Abstraction Layer (MD-SAL) architecture,
which lets its different components – called projects – share
information. ODL lacks an API to share common structures
for dynamic reconfiguration of the network; e.g. if an ODL



project needs to save information about flow entries in the
network before being restarted, it is itself responsible for saving
them. ONOS follows a well-defined architecture with specific
APIs. For example, it is possible to obtain information about
flow entries in the network and if a module is uninstalled,
the flows related to it will disappear in the network as well.
Although ONOS handles dynamic configuration for flow entries,
it is still very oriented towards its own modules and is Java-
oriented. To add external functionality, we should redevelop
it to fit the language and architecture of the specific SDN
framework. Moreover, these frameworks still lack a way to
detect malfunctioning modules.

The authors in [?] analyze the requirements of a memory
management tool to optimize system performance for five SDN
controllers, which is one of the keys for smooth dynamic
reconfiguration. It is a good approach but it does not address
all the requirements for dynamic reconfiguration.

Research how to handle state on network update exists,
albeit without focusing on reconfiguration of the whole system
[?], [?]. While we focus on the state handling between different
apps, their ideas and concepts can still be applied on top of our
concepts for handling the state while reconfiguring the system.

III. REQUIREMENTS FOR DYNAMIC RECONFIGURATION

We define the reconfiguration of the SDN network here as
the possibility to replace, reload, add or remove a module in the
currently running configuration without restarting or affecting
the reminder of the SDN software. In this section, a module is
a synonym for an SDN controller app, but it could be more
general and even correspond to an entire controller.

The reasons for dynamic reconfiguration can be placed into
two categories: (1) planned reconfigurations (moving the SDN
controller to different hardware/software, changing the context:
reconfiguring the services and resources based on changes in
user needs, business goals, and/or environmental conditions)
and (2) unplanned reconfigurations. Supporting both categories
is equally important and implies three key requirements.

During a reconfiguration (e.g., implying a controller restart),
the controller might not be able to process requests, impeding
network traffic. This is clearly undesirable. Hence, the first
requirement is to minimize the time for reconfiguration itself.

The reconfiguration itself needs to be triggered by an
event. This is trivial for a planned reconfiguration. But for
an unplanned configuration, it will be caused by detecting
that the system is not working as intended: a part of the
system is malfunctioning or has crashed. This leads to a second
requirement: detection of malfunctioning parts or modules.

The network should be disrupted as little as possible when
a reconfiguration takes place; therefore, probably the most
important aspect of dynamic reconfiguration is the transition
from the old state to the new state. Thus, the third requirement
is to gracefully handle the state during the reconfiguration.

IV. DESIGN

A. External or internal?

We identified two approaches of implementing the dynamic
reconfiguration of modules in an SDN network (see Figure 1).

SwitchSwitch SwitchSwitch

SDN Cont.SDN Cont.SDN Controller

Recon�guration
Framework

Controller
Framework

Controller
Framework

Recon�guration
Framework

Controller
Framework

Active
Module

Backup
Module

Active
Module

Backup
Module

Fig. 1. Simplified comparison of approaches to implement reconfiguration as
SDN controller component (left) and as independent component (right)

The first one keeps the SDN controller as the central instance
in the SDN stack and integrates reconfiguration mechanisms in
the controller. The second one has a separate entity that acts
as central component to handle the actual controller and to
control the restarting and reconfiguration of the controller and
its apps. These approaches are orthogonal to whether the SDN
controller is implemented in a distributed manner or not.

In the controller-based approach, the controller’s own
mechanisms can be extended and the dynamic reconfiguration
can be tightly coupled with the controller’s features. In practice,
it is difficult to maintain such an approach when the underlying
controller framework keeps developing. The approach with
a separate entity may make the integration with the SDN
controller harder but offers more flexibility and possibilities.
In particular:

• Different modules can be separated into individual pro-
cesses, which in turn improves reliability.

• The reconfiguration process becomes controller-
framework-agnostic. This allows to extend reconfiguration
even when multiple controllers work in parallel under the
control of this central component, which can then also do
composition of multiple modules (see NetIDE [?], [?]).

• Composition mechanism for multiple controllers (like
CoVisor [?] or OpenVirtex [?]) can be integrated.

• Radical reconfigurations are possible since the SDN
controller is no longer an entity that cannot be stopped.

There is ample evidence for the feasibility of such an
external approach. Using a small external coordinator to
improve the reliability of the whole system is also used in high
availability systems in which multiple instances of a software,
or even different software/hardware implementations, are used;
the external component monitors the instance and selects a
working instance to control the whole system (e.g., [?]).

In this paper, we are hence looking in detail at the second
approach since its greater flexibility facilitates more powerful
reconfiguration. We expect the line between these approaches
will be blurred in the future by distributed SDN controllers that
are a hybrid of the two approaches and incorporate a distributed
version of the reconfiguration framework.

B. Granularity

As we base our design around the idea that the SDN
network is controlled by multiple modules that run on one or
more controllers, we have to also consider this for the central
component’s design. On the coarsest granularity, a module
is a whole SDN controller. Enhancing the SDN controller to



communicate more information about its loaded applications
and annotating the network commands with an identifier of the
application allows the central component to treat the individual
applications of a controller as individual modules, and allows
reconfiguration to treat them as individual modules instead of
a having to treat a whole controller as module.

C. Specification of (Re-)Configurations

Reconfiguration at run-time requires that developers or
deployers of an SDN system are able to specify the configu-
ration somehow. First, this specification needs to be available
at deployment time when an SDN controller along with is
modules is brought online. Later on, the configuration might
change during run-time; such changes then are reflected (if
necessary) by a reconfiguration action.

Therefore, this specification language should support not
only static configuration as such, but also the reconfiguration
steps from one configuration to another. Ideally, the specification
should only require reconfiguration specifications that cannot
be calculated automatically from the differences between an
old and a new configuration specification.

D. Detecting malfunctioning modules

One of the events for reconfiguration is handling malfunc-
tioning components. For handling these run-time problems, we
have to go through three steps. Firstly, we have to detect the
problem to trigger the reconfiguration. Secondly, we need to
choose one configuration that alleviates the problem. Thirdly,
we perform a run-time reconfiguration.

Detecting a problem is generally hard (and strictly speaking,
not even computable, cp. halting problem). Instead of checking
if a module ceased to work, we hence decided a pragmatic
approach that checks the liveliness of the deployed modules.

Malfunction of deployed modules can manifest in different
ways. The most classic and basic form of malfunction is a dead
module that crashes and ceases to respond to requests altogether.
This can be detected using a simple heartbeat or timeout
mechanism. For instance, if the module is using the OpenFlow
protocol, the switch will periodically send EchoReq messages
to the module. If the module is still alive, it will respond with
an EchoRes message. Missing EchoReq responses from the
module indicate a dead module. If the switch does not request
EchoReq messages or the EchoReq message interval is too
long for the required reaction time, the central component will
send additional EchoReq messages to the module.

Apart from these implicit events of missing heartbeats, also
explicit events can trigger a module to be marked as dead. The
module can send an exit or failure message that indicates the
module is no longer available (in the sense of a fail-stop error
model). This message can also be intended, e.g. because the
user explicitly stopped the module. Modules might also be
restarted by external mechanism. In this case, the arrival of a
new module with the same name and configuration is another
event that marks it as dead and to be replaced by the new one.

Figure 2 shows a simple example of an active module with a
standby module. After the active module stops to send keepalive
packets, it is marked as “dead” and the central component
switches over to the standby module.

keepalive
packets

A B

core

Active Standby
Module A B

core

Active Standby
A B

core

dead Active

Fig. 2. Switchover between two modules after crash of primary module

Similar to the dead module, but harder to detect, is a
partially dead module or malfunctioning module that still
responds to some events or sends invalid or erratic messages.
As an example, think of an ARP handler that uses multiple
threads whose main thread, handling the EchoReq, is still
alive and therefore the module is not marked as dead, but
ARP requests are not answered anymore. To check liveliness
in this scenario, the central component needs not only to check
the general liveliness of the module but also the liveliness of
a specific function, either by passive observation (e.g. ARP
requests to the module should be followed by ARP answers)
or by active checks (e.g. sending probe ARP requests).

Using external checks to monitor the network status and
its components is already implemented in most data centers
with specialized network monitoring software like Icinga [?].

E. Handling malfunctioning modules

To reach the goal of run-time reconfiguration with as
little downtime as possible, malfunctioning modules also have
to be handled fast. This requires an automatic solution that
does not depend on manual intervention of an operator. But
since not all modules that are failing are the same, the
dynamic reconfiguration process needs some hints (from module
developer or deployer) on how to handle the module. These
hints can be provided offline, e.g., at deployment time.

For a malfunctioning module, we categorize the actions
that can be taken into the following categories:

1) Repair the original module.
2) Replace the module with another module/configuration.
3) Control possible damage; do not restore the full function-

ality, but try to limit the impact of the malfunction.

Repairing the original module is usually accomplished by
restarting the affected module (and potential dependencies). It
differs from the usual “restart the controller” scenario since
the central instance still manages the state while the module is
restarting. Replacing the module is an option if an alternative
module is available that can accomplish the same task, but
perhaps not as well as the primary module. An example
would be one sophisticated forwarding module that selects the
forwarding paths using advanced utilization-based algorithms;
the module has as backup a simpler forwarding module that only
selects a path randomly among the shortest paths. Controlling
possible damage is an option to contain a malfunctioning
module without affecting the rest of the network.

For each of these options we have to treat the original
module and its state, which can be broadly categorized into
three categories:

1) the internal state of the module,



2) the observable and controllable state of the module,
3) the state of the module in external systems.

Let us consider an example of what these states are for a
simple forwarding module. The internal state of the module
is everything that the module holds in its own memory, like
the path decisions made or internal statistics. The observable
and controllable state consists mainly, but is not limited to,
the installed flow rules. These rules can be tracked by the
central component via the interaction of the module over its
south-bound interface. In the reconfiguration event, this state be
changed and controlled, e.g. removing the installed flow rules.
The last state is the state in external system. In this example,
the forwarding module could have answered the queries for
the default gateway IP address with a specific MAC address,
which created an entry in the ARP table of the connected hosts
or, in other words, a state in an external system.

For a malfunctioning module, its internal state has to be
considered as invalid or lost. If some of it is important the
module needs to have its own mechanism to checkpoint and
restore this state. Most modules will already have most of
this implemented as restarting a module without dynamic
reconfiguration also requires reading in configuration values
and other persistent data stores.

The observable and controllable state is either kept or
removed. For a more advanced scenario, also a combination is
conceivable, e.g. removing or keeping only flow mods matching
a certain pattern. There is no general rule to decide whether
keeping or removing the state is preferable. This also depends
on the function of a particular module. For example, when
replacing a forwarding module, it is better to keep the old state
and let the rules be slowly replaced with new rules.On the
other hand, a firewall requires a consistent set of rules and
mixing flow rules from different firewall applications might
create unforeseeable problems, which means that we should
provide a clean state on switchover. Hence, we again foresee
an option for the module developer to specify the behavior
desired from the central component.

In some instances (e.g. the mentioned forwarding module)
it might be the best solution to keep the existing forwarding
paths active to minimize network disruption. The failing module
might not even be under the control of central component and
it can only wait for the module to (hopefully) recover.

F. Adding/removing modules

When adding or removing a module, the behavior is slightly
different from handling an exception. For a planned dynamic
reconfiguration, the user of the SDN network will supply a
configuration that supersedes the old one.

To accept the new configuration, the run-time system has
to make sure that the new configuration is valid and that
switching to it does not cause additional downtime. To clarify
the verification of the new configuration, we only require a
validation that all prerequisites of a new configuration are
fulfilled. Checking and activating the new configuration has to
go through the following steps:

• Checking the syntax of the new configuration.

• Checking if all (required) modules for the new configura-
tion are present or, if necessary, wait for the new modules
to connect.

• For removed modules, their state has to be handled. This
is almost identical to the exception case. But since a
module is usually removed intentionally, the default, unless
specified otherwise, is to remove as much of its state as
possible.

• Replace the old configuration with the new configuration.

V. SPECIFICATION LANGUAGE

For the specification language, we extend here an XML-
based specification language that we proposed earlier [?] with
composition of modules into complex network applications.

For reconfiguration, the run-time configuration has two
basic blocks: the Modules and the ExecutionPolicy blocks.
Listing 1 provides an example of the specification language.

1 <RuntimeConfiguration>
2 <Modules>
3 <Module id=”firewall”>
4 <liveliness type=”ofPing”/>
5 <recovery type=”restart” />
6 </Module>
7 <Module id=”fwd”>
8 <liveliness type=”timeout”>3000</liveliness>
9 <liveliness type=”plugin”>eu.netide.arpchecker</liveliness>

10 <recovery type=”replace”>slowfwd</recovery>
11 </Module>
12 <Module id=”slowfwd”>
13 <recovery type=”ignore” />
14 </Module>
15 </Modules>
16 <ExecutionPolicy>
17 <ModuleCall id=”firewall” dpid=”2 7 9”/>
18 <ModuleCall id=”fwd” dpid=”1 3 4”>
19 </ExecutionPolicy>
20 </RuntimeConfiguration>

Listing 1. (Condensed) Specification Example

The Modules block specifies the modules with their
behavior vis-à-vis reconfiguration using these attributes:

id: Unique identifier for each module.
liveliness: One or several tests that must be (all) passed

for module to be considered alive. Some are available as
internal checks, e.g. OpenFlow ping or failure to respond to
PACKET_INs in a given time (timeout). Sophisticated
checks can be specified by external classes.

recovery: It specifies the action performed when the liveli-
ness tests fail. Available options are: restart the module,
ignore the module henceforth (do not accept any input
from or forward information to the module), or to replace
it, in which case the module is ignored and instead another
module whose identifier is specified here is used in its
place. In effect, the replacement’s module ID is used
instead of the replaced module’s ID in the ExecutionPolicy.
We also provide the possibility of having a custom class
handle the recovery, similar to the liveliness check.

state: How to handle the module state. So far, we imple-
mented remove|keep|keepUntilRecover where
the last option is a hybrid that keeps the rules until the
module is replaced or recovered. Bespoke state handling
is easy to conceive and integrate.

The ExecutionPolicy block specifies the composition. Since
we focus on the reconfiguration, we keep that section brief



9.6 9.7 9.8 9.9 10.0 10.1 10.2 10.3 10.4
Packet delay

0.00

0.01

0.02

0.03

0.04

0.05

P
ro

b
a
b
ili

ty

4 6 8 10 12 14
Packet delay

0.00

0.01

0.02

0.03

0.04

0.05

P
ro

b
a
b
ili

ty

Fig. 3. Recover time seen from an application, left 0.2 s and right 20 s interval

here and provide a way to map modules to switches. The
ModuleCall statement links the DPID of a switch with the
Module to call if an event from this switch arrives.

VI. EVALUATION

A quantitative evaluation is difficult and the implementation
specific metrics (number of packets lost, time for to detect a
malfunction) have not much significance to prove the concept.
We therefore focus on a proof-of-concept evaluation.

We used a Ryu [?] learning switch. For a reconfiguration,
we start a second instance and load a new configuration that
directs all traffic to the new switch. The new configuration was
applied instantly with no measurable delay or packet loss.

To test an unplanned reconfiguration we used the same
scenario with dead module timeout of 10000 ms. We send a
Unix SIGSTOP signal to the first controller to simulate a non-
responding controller. When that happens the (queued) answer
of the backup controller were send to the network.

The detection time is naturally dependent of the frequency of
packets. The smaller the packets inter-arrival time, the quicker
a non response is detected. The OpenFlow heartbeat was 5 s in
our test setup. We ran the standard ping command and used its
reported latency. The result for ping with an interval of 0.2 s
in shown in Figure 3. Since the ping interval is much shorter
than the heartbeat interval, most timeouts are triggered by ping
itself and most responses are therefore also in the 10 s timeout
with other peaks in 0.2 s intervals. The main peak being at
9.8 s rather than 10 s is an artifact of ping’s RTT reporting.

With a 20 s ping interval, timeouts occurring from the
heartbeat interval (5 s) are more significant and result in
observed ping latency distribution from 5 to 15 s. The larger
interval allows ARP timeouts to happen which add additional
packets on the network which on themselves trigger timeouts,
of the 10 s the 5 s from ARP not are included in ping’s RTT .

The results have some minor irregularities, which also are
expected in an emulated experiment setup like MiniNet, but
otherwise confirm what is expected for a timeout based system,
which shows that our approach is working.

VII. CONCLUSION & FUTURE WORK

We are confident that our proposed reconfiguration methods
and our implementation of the proposed mechanisms are an
essential step for making SDN controllers and networks more
resilient and further reduce the planned and unplanned down
times in SDN networks.

The current prototype only uses a single central instance
for controlling the dynamic reconfiguration. We will look into

developing a distributed system to further reduce downtime
and increase resilience.

Almost all of the concepts in this paper do not require a
specific SDN protocol like OpenFlow. The existing implemen-
tation could be extended to cover other non-OpenFlow SDN
protocols without conceptual difficulties.

ACKNOWLEDGMENTS

Work presented here has been partially sponsored by the European
Union through the FP7 project NetIDE, grant agreement 619543.


