
NetIDE: All-in-one framework for next generation,
composed SDN applications

P. A. Aranda Gutiérrezα, E. Rojasβ , A. Schwabeγ , C. Stritzkeδ, R. Doriguzzi-Corinε,
A. Leckeyζ , G. Petraliaζ , A. Marsicoε, K. Phemiusη, S. Tamurejoθ

αTelefónica I+D, βTelcaria Ideas S.L., γPaderborn University, δFraunhofer IEM, εCREATE-NET, ζ Intel Labs Europe, ηThales, θIMDEA Networks

I. INTRODUCTION

Software-Defined Networking (SDN) is bringing
DevOps [1] capabilities to current networks, reducing
the time-to-market for new services and thereby providing
a strong incentive for adoption to Service Providers and
Network Operators. However, the current SDN landscape
is extremely fragmented, so that different open and closed
source controller frameworks such as OpenDaylight [2],
Ryu [3], Floodlight [4] or ONOS [5] exist. This jeopardises
the gains of introducing SDN, since porting SDN applications
from one platform to another is time consuming and requires
high effort. As a consequence, SDN users (e.g. network
operators) face the danger of vendor (or platform) lock-in:
they are confined to applications working for the platform of
their choice, or forced to re-implement their solutions when
they choose a new platform.

In this companion paper1, we present the consolidated
NetIDE framework [6], which delivers an integrated
environment for SDN development that unifies different SDN
frameworks and allows developers to write, test and deploy
applications that are independent from the underlying SDN
technology. The project has successfully produced and released
to the Free and Open Source Software (FOSS) community
(i) an Eclipse-based Integrated Development Environment
(IDE) [7], which supports the design and development of
network applications and (ii) the Network Engine [8], which
allows the composition of network applications written for
different platforms into new applications.

In this work, we propose realistic scenarios where the
NetIDE framework is not only used to design, implement
and test network applications, but also to support the network
operator in providing new functions to operational SDN
networks without any relevant service disruption.

II. NETIDE OVERVIEW

NetIDE provides a framework that is composed of: (i)
an Eclipse-based IDE called NetIDE Development Environ-
ment: one single tool to manage the whole life-cycle of a
network application, from the design, to the implementation,
deployment and testing, and (ii) the NetIDE Network Engine,
which fosters network application portability and composition:
network applications written for different controller frame-
works can be re-used and executed on top of the controller
framework that is currently driving a given network infras-
tructure.

The NetIDE Development Environment provides editors

1This work is partially supported by the EU FP7 NetIDE project under
grant agreement 619543.

that support network programming languages, a graphical
editor to specify network topologies and the interfaces for tools
to debug network applications and monitor the network.

The Network Engine (Fig. 1) follows the layered SDN
controller approach proposed by the Open Networking Foun-
dation [9]. It integrates a Client Controller layer that executes
one or more modules of the global network application and
a Server Controller layer that drives the underlying network
infrastructure. In between, the so-called Core layer hosts all
logic and data structures that are independent from client
and server controllers. It also provides a uniform interface to
tools to inspect or debug the control channel and manage the
network resources.

Fig. 1. The NetIDE Engine components.

As shown in Fig. 1, the Network Engine architecture fore-
sees application modules written for different client controllers
frameworks. They run simultaneously and are orchestrated by
the NetIDE Core, resulting in a global network application that
controls the physical infrastructure. To this purpose, the Core
implements a composition mechanism that is able to handle the
conflicts that may occur between multiple modules running
in parallel (a well-known and non-trivial problem already
investigated in, e.g., [10], [11] and a few other works). In
addition, the design of the Network Engine is flexible enough
to support different control protocols such as different versions
of the OpenFlow specification [12] and OpFlex [13], and
different network management protocols such as Netconf [14]
and SNMP [15].

III. DEMONSTRATION

The most relevant aspects of the demonstration are repre-
sented in Fig. 2 and can be summarized as follows:

1. We first use the NetIDE Development Environment to
design the network topology and to build a network applica-
tion by means of the composition of two or more modules.

2. Then, we start the deployment phase, where the Network
Engine is configured to meet the network application re-
quirements in terms of client controller frameworks and978-1-4673-9486-4/16/$31.00 c© 2016 IEEE

Topology Design Code Editor

Composition Specification

Engine Configuration Network Application

Network Engine

Composition Spec.

Mininet

Network Application

NetIDE Development Environment

Learning Switch

PY/Java

<Module LearningSwitch/>
<Module Firewall/>
<Module Monitor/>
<Module LoadBalancer/>
<Module DOSProtection/>

Floodlight

Firewall Ryu

Monitor Floodlight

Server Controller ONOS

FloodLight Ryu

Virtual Machine

LS FW

< />

Deployment

 Runtime

Load Balancer Ryu

DOS Protection Ryu

Load Balancer

Monitor

NetIDE Core

ONOS

DOS prot.

Fig. 2. Graphical representation of the two main phases of the demonstration: design/deployment (white elements) and runtime (red elements).

composition specification, and Mininet is configured to
emulate the designed topology.

3. We show how different modules, written for different
controller frameworks, cooperate as a single network ap-
plication on controlling the network.

4. We tune the network application at runtime by stop-
ping/starting/adding modules and reloading the composition
specification.

Demo scenario: To demonstrate the concepts listed above,
we set up a scenario where a Local Area Network (LAN)
is controlled by a Layer 2 forwarding module and protected
against unauthorized access by a network element acting as
a Firewall. Traffic injected into the LAN is monitored by an
SDN application which intercepts relevant control messages
and displays them on a terminal.

Design and Development: We start the demonstration
by preparing the aforementioned scenario from the NetIDE
Development Environment (white elements on left side of Fig.
2), where we design the topology, select/modify a set of SDN
application modules (Learning Switch, Firewall and Monitor
in the Figure), and finally we prepare the configuration for
the Network Engine. Application modules are written either in
Java or in Python programming languages and implemented for
different controller platforms (in this demo we use Floodlight
and Ryu as client controllers). Such modules will cooperate
on controlling the network as a single network application
thanks to the Composition Specification, a set of XML-encoded
policies that determine how the NetIDE Core coordinates the
modules so that they can operate simultaneously on controlling
the same traffic without any conflict.
The output of this phase is a set of artefacts consisting of:
(i) a configuration file for Mininet, a configuration file for
the Network Engine (the Composition Specification) and the
network application as a set of modules written for Ryu and
Floodlight.

Deployment: The output of the previous phase is deployed
onto a pre-configured Virtual Machine where all the required
components are configured and started. As represented by
white elements on the right side of Fig. 2, Mininet loads
the topology model produced by the NetIDE Development
Environment, and the Network Engine is assembled with
the required controller frameworks (for the demonstration we
will use ONOS as a server controller, although OpenDaylight
and Ryu are also supported). As soon as the NetIDE Core
loads the Composition Specification, the Network Engine starts
controlling the network through the network application based
on the policies defined in the Specification.
We demonstrate that the scenario is running as expected by
injecting some traffic into the network. Thus, we show that
hosts inside the LAN can communicate with each other,

the LAN is protected from undesired traffic and it is also
monitored to discover possible security breaches coming from
trusted users.

Runtime: As a next step, we show how the NetIDE
framework can be used to activate new network services at
runtime to improve, for instance, performance and security of
a production network. Referring to red elements in Fig. 2,
we show how the NetIDE Development Environment can be
used to tune the Network Engine which is currently controlling
the network to satisfy new requirements with minimal service
disruption (specifically, without the need of restarting the
Network Engine). We add a Load Balancer module to spread
the users’ requests over different web-servers and we install
another module that cooperates with the Firewall on protecting
the network from Denial of Service (DoS) attacks.

IV. CONCLUSION

We implemented the NetIDE framework, a tool to manage
the whole life-cycle of a network application: from the design,
to the implementation, deployment and testing. In this work,
we demonstrated how such a framework is also effective
in production networks, where SDN functionalities can be
dynamically activated or tuned with minimal impact on control
and data planes.

REFERENCES

[1] L. Bass, I. Weber, and L. Zhu, DevOps: A Software Architect’s Per-
spective. Addison-Wesley Professional, jun 2015.

[2] “OpenDaylight,” http://www.opendaylight.org, 2016.
[3] “Ryu SDN framework,” http://osrg.github.com/ryu/, 2016.
[4] “Floodlight,” http://www.projectfloodlight.org/floodlight, 2016.
[5] P. Berde et al., “Onos: Towards an open, distributed sdn os,” in HotSDN

2014, Chicago, IL, August 2014.
[6] “NetIDE website,” http://www.netide.eu, 2016.
[7] “NetIDE Plugin,” http://marketplace.eclipse.org/content/netide, 2016.
[8] “NetIDE Network Engine,” https://github.com/fp7-netide/Engine, 2016.
[9] “ONF,” https://www.opennetworking.org, 2016.

[10] Jin, Xin et al., “CoVisor: A Compositional Hypervisor for Software-
Defined Networks,” in 12th USENIX NSDI, 2015.

[11] Mogul, Jeffrey C. et al., “Corybantic: Towards the Modular Composi-
tion of SDN Control Programs,” in 12th HotNets, 2013.

[12] “OpenFlow Switch Specification version 1.5.1,”
https://www.opennetworking.org/images/stories/downloads/sdn-
resources/onf-specifications/openflow/openflow-switch-v1.5.1.pdf.

[13] M. Smith et al., “OpFlex Control Protocol,”
https://tools.ietf.org/html/draft-smith-opflex-00, IETF, Apr. 2014.

[14] R. Enns et al., “Network Configuration Protocol (NETCONF),”
http://www.ietf.org/rfc/rfc6241.txt, IETF, Jun. 2011.

[15] J.D. Case et al., “Simple Network Management Protocol (SNMP),”
http://www.ietf.org/rfc/rfc1157.txt, IETF, May 1990.

