
NetIDE: removing vendor lock-in in SDN

R. Doriguzzi-Corinα, E. Salvadoriα, P. A. Aranda Gutiérrezβ , C. Stritzkeγ ,
A. Leckeyδ, K. Phemiusε, E. Rojasζ , C. Guerreroη

αCREATE-NET, βTelefónica I+D, γFraunhofer IPT, δIntel Labs Europe, εThales, ζTelcaria Ideas S.L., ηIMDEA Networks

I. INTRODUCTION

The Software-Defined Networking (SDN) paradigm allows
networking hardware to be made “malleable” and remotely
manageable by the so-called SDN controllers. However, the
current SDN landscape is extremely fragmented. Different
open and closed source controller frameworks such as Open-
Daylight [1], Ryu [2], Floodlight [3], etc. exist. Porting SDN
applications from one such platform to another is practically
impossible and so, SDN users like network operators face
a situation where they are either confined to applications
working for the platform of their choice, or forced to re-
implement their solutions every time they encounter a new
platform.

In this companion paper we present a preliminary version
of the NetIDE framework1, whose ultimate goal is to deliver
an integrated environment for SDN development that unifies
different controller technologies and allows developers to
write, test and deploy applications that are independent from
the underlying SDN technology. The main building blocks of
NetIDE are (i) the Integrated Development Environment (IDE)
that supports the design and development of network applica-
tions and (ii) the Network Engine, a runtime environment that
provides interoperability of network applications written for
different platforms.

The paper is structured as follows: Section II provides a
global picture of the NetIDE architecture while Section III
presents a preliminary prototype of the NetIDE framework and
describes how we want to demonstrate some functionalities
implemented as proof-of-concept.

II. NETIDE ARCHITECTURE

NetIDE foresees three different environments (sketched in
Fig. 1): (i) the different tools, like the topology editor, the
code editors, debuggers, etc. in the Integrated Development
Environment (IDE), (ii) the Application Repository and (iii)
the Network Engine where the Network Applications are
executed.

The IDE includes a set of editors supporting various net-
work programming languages and provides a graphical editor
to specify network topologies. The IDE is both a consumer and
a producer of Network Applications, since it needs to be able
to read and dissect them and send the different components
to their associated editors on the one hand, and to assemble
Network Applications from the components produced by the
different editors. The Application Repository provides a means
to store and retrieve Network Applications without any further
manipulation. Finally, Network Applications are deployed on
the Network Engine, which is therefore a consumer.

1This work is partially supported by the EU FP7 NetIDE project [4] under
grant agreement 619543.

The Network Engine follows the layered SDN controller
approach proposed by the Open Networking Foundation [5].
It integrates a client controller layer that executes the modules
that compose a Network Application and interfaces with a
server SDN controller layer that drives the underlying infras-
tructure. In addition, it provides a uniform interface to common
tools that are intended to allow the inspection/debug of the
control channel and the management of the network resources.

N
etID

E
 E

n
g

in
e

Network
Element

Network
Element

Network
Element

Network
Element

Server Controller Framework 

Tools

Client Controller Framework 1 Client Controller Framework 2

Network Application

module module

IDE Application Repository

Store

Retrieve

Deploy Dep
loy

Fig. 1. Workflow between the different NetIDE components.

As shown in Fig.1, the Network Engine architecture fore-
sees applications written for different control frameworks
to run simultaneously and controlling/configuring the same
physical infrastructure. To this purpose, we are exploring some
possible composition mechanisms for the Network Engine that
are able to handle the conflicts that may occur with multiple
applications running in parallel (a well-know and non-trivial
problem already investigated in, e.g., [6], [7] and a few other
works).
Finally, the design of the Network Engine is flexible enough
to support different control protocols (such as different ver-
sions of the OpenFlow specification [8] and OpFlex [9]) and
different network management protocols such as Netconf [10]
and SNMP [11].

III. DEMONSTRATION

The objective of the demonstration is to show two of the
NetIDE framework benefits: (i) an Integrated Development
Environment: one single tool to manage the whole life-cycle



Fig. 2. Workflow of the demonstration.

of a Network Application: from the design, to the implemen-
tation, deployment and testing; (ii) Network Application re-
usability and portability: Network Applications written for
many different controller frameworks, e.g. implemented in
the past for different environments/needs, can be re-used and
executed on top of the controller framework that is currently
managing a given network infrastructure or, on the other way
around, a well-tested Network Application can be ported and
executed “as is” on a second network controlled by another
controller framework.
The demo can be broken down into the following steps:

1. We will first use the NetIDE Development Environment to
design the network topology and to implement Network
Applications for one or more controller frameworks.

2. Then, we will deploy Network Applications and topology
to a Virtual Machine (VM) where the Network Engine and
a network simulator (Mininet [12]) are installed.

3. We will demonstrate the Network Application re-usability
and portability concepts by running applications written
for a specific controller framework on top of a different
framework (e.g., a Floodlight application running on top of
Ryu).

4. Besides, we will show debug messages coming from the
Network Engine on the IDE console.

The workflow of the demonstration is shown in Fig. 2.
Essentially, the demonstration starts from the Eclipse-based
Development Environment (on the leftmost side of the figure)
which is used by developers to write the application’s code
and that provides a graphical editor for network topologies.
Developers can use it to create virtual switches and hosts,
assign ports to them, connect the ports and assign controllers
to virtual switches.
Another graphical user interface (not shown in the figure)
enables developers to link the Network Applications to the
Network Engine. In this interface, developers have a list of
controllers from which they select the client and the server
controller frameworks that will compose the Network Engine
(e.g. Ryu, Floodlight or OpenDaylight) and another list of
application executables which will run on top of the Network

Engine (e.g. Python module, Jar File).
The next step is the generation, through the IDE, of

the network simulator configuration (a Python-based Mininet
configuration) from the topology model plus the Network
Engine configuration.
At this point, we will have a fully configured and running VM
where the Network Engine as well as the network simulator
are launched automatically via Secure Shell commands from
an Eclipse console. Additionally, the Mininet prompt and the
console output of the Engine will be accessible from the IDE.
Using the prompt, we will generate some traffic on the
simulated network, while the console will show the control
messages exchanged between the Network Application and the
Mininet’s switches and that go through the Network Engine.

REFERENCES

[1] “OpenDaylight - A Linux Foundation Collaborative Project.” [Online].
Available: http://www.opendaylight.org

[2] “Ryu SDN framework.” [Online]. Available: http://osrg.github.com/ryu/
[3] “Floodlight OpenFlow Controller.” [Online]. Available:

http://www.projectfloodlight.org/floodlight/
[4] “NetIDE website.” [Online]. Available: http://www.netide.eu/
[5] “Open Networking Foundation.” [Online]. Available:

https://www.opennetworking.org/
[6] Jin, Xin et al., “CoVisor: A Compositional Hypervisor for Software-

Defined Networks,” in 12th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 15), 2015.

[7] Mogul, Jeffrey C. et al., “Corybantic: Towards the Modular Composi-
tion of SDN Control Programs,” in Proceedings of the Twelfth ACM
Workshop on Hot Topics in Networks, 2013.

[8] “OpenFlow Switch Specification version 1.5.0.” [Online]. Avail-
able: https://www.opennetworking.org/images/stories/downloads/sdn-
resources/onf-specifications/openflow/openflow-switch-v1.5.0.noipr.pdf

[9] M. Smith et al., “OpFlex Control Protocol,” IETF, Apr. 2014. [Online].
Available: https://tools.ietf.org/html/draft-smith-opflex-00

[10] R. Enns et al., “Network Configuration Protocol (NETCONF),” RFC
6241 (Proposed Standard), IETF, Jun. 2011. [Online]. Available:
http://www.ietf.org/rfc/rfc6241.txt

[11] J.D. Case et al., “Simple Network Management Protocol (SNMP),”
RFC 1157 (Historic), IETF, May 1990. [Online]. Available:
http://www.ietf.org/rfc/rfc1157.txt

[12] “Mininet,” http://mininet.org, 2014.


