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L1ST OF CORRECTIONS

Abstract—While Software Defined Networking is starting to
fulfill some of its promises, the danger of vendor lock-in still
lurks: Network control applications are closely tied to a particular
controller framework and not easily portable between them;
multiple controller frameworks are usually not able to cooperate
inside a single network. This paper describes architectural options
to enable portability and cooperation inside a single network,
recommending a master/client multi-controller approach at run-
time, with some additional information about network control
applications generated at development time.

I. INTRODUCTION

Software-Defined Networking (SDN) is starting to show
benefits. Lower equipment cost and regaining the control of
the network are value propositions which Network Operators
cannot ignore. However, we observe a high level of scat-
tering in the market, since equipment vendors are adopting
different controller frameworks with different programming
environments and Southbound Interfaces (SBIs). This trend
puts Network Operators back to square one with regards
to vendor lock-in: once an SDN vendor is chosen, it will
bring in its network gear, SDN controller and set of Network
Applications (i.e. the applications that implement a certain
network functionality and run in one SDN controller). Any
attempt to create a multi-vendor network will, at the very
best, result in the creation of multiple isolated network islands,
each with the solution of a specific vendor. Moreover, reusing
Network Applications is difficult or impossible, given the
differences in programming language and model among SDN
controllers.

There is hence a need for a solution that allows multiple
Network Applications to cooperate inside a single network,
irrespective of the controller for which they were developed.
This paper discusses architectural options how this goal can be
achieved and recommends on option that has shown promise in
early prototyping. We shall structure this discussion along the
typical steps in a software development and deployment cycle
(Section III), after clarifying some terminology conventions
in Section II. We shall consider architectural options for
the controllers as such, as well as for the generation and
usage of information about Network Applications. After these
considerations, we will put our proposals into context with
related approaches in Section IV before we conclude the paper.
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II. CONTEXT: SDN ARCHITECTURAL ASSUMPTIONS AND
TERMINOLOGY

Standard SDN terminology starts to coalesce [1]. Nonethe-
less, we want to highlight here one architectural aspect not
commonly considered in existing terminology. In particular,
it concerns how functionality is structured inside an SDN
controller.

Commonly, an SDN system is regarded as a set of Network
Elements (e.g., switch, router), sending network events using
a control protocol (e.g., OpenFlow) to a controller process
that interprets these events and computes suitable actions in
response to them. This controller process is often regarded as
a monolithic piece of software, and in many SDN architec-
ture discussions this is fully sufficient and adequate. For the
purpose of the following discussion, we want to highlight the
following observations: Usually, the actually running controller
is not a monolithic piece of software. Rather, it is composed
of some basic functionality as well as some customized code;
this customized code takes the actual decisions and realizes
the specific behavior of a particular network.

This basic functionality is reusable across many different
deployments. It realizes functions like parsing messages from
switches, providing execution environments for the customized
code (calling its functions in a proper environment, with means
to store state, set timers, etc.), and send actions back to
switches. This basic functionality can be realized in differ-
ent ways, and examples for such different realizations exist:
Projects like Beacon, POX, Ryu, Floodlight and others provide
such basic functionality.

In isolation, basic functionality alone will not provide any
network behavior — it is but an empty shell. Hence, most of
the projects just mentioned also provide examples for custom
functionality (e.g., topology discovery, spanning trees, etc.);
but this is software that is qualitatively different from the basic
functionality. The main point is that such custom functions
must be easily extensible and replaceable. Only together —
basic functionality and custom functions — is an actual SDN
controller complete and ready to work.

It seems hence prudent to assign separate names to these
different aspects of a controller. The reusable, basic, non-
specific functionality of a controller constitutes a Controller
Framework; the specific, customized code that controls the
processing of messages and determines the actual actions could
be referred to as Network Control Applications. Together,



once instantiated and running in a real system, they act as
a Controller, illustrated by the dashed box in Figure 1. !
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Fig. 1. ONF proposed SDN solution architecture

We largely keep to the standard terminology recommended
by the Architecture & Framework working group of the
Open Networking Foundation (ONF), shown in Figure 1,
which provides a foundation for SDN solution development.
We slightly simplify the term Network Control Applications
to Network Applications. These applications reside in the
Application Plane. The SDN Controller Frameworks reside
in the Controller Plane. Finally, all Network Elements are
considered to be part of the Data Plane.

III. ARCHITECTURAL OPTIONS

The problem to solve is hence to run Network Appli-
cations developed for different controller frameworks inside
a single network. Ideally, for a Network Application, this
should be transparent: no changes are required. Rather, changes
in the controller platform are acceptable; options are dis-
cussed in Section III-A. These considerations will conclude
that additional information about a Network Application is
helpful or required beyond the mere object code; options
for suitable Network Application representations are presented
in Section III-B. Finally, Section III-C briefly summarizes
requirements to use said representations.

A. Architectural options for controllers

To realize such a multi-framework-supporting controller,
several architectural options are conceivable.

e  One input language Conceptually, one could replace
all existing programming models by a single language
to specify Network Applications, in the sense of an
external Domain Specific Language.

This is the goal of the Northbound Interfaces Working
Group (NBI) in the Open Networking Foundation
(ONF), which attempts to develop an information
model and encodings for SDN Controller North-
bound Application programming interfaces (APIs) in

'We conjecture that the common, yet slightly confusing practice to talk
about a “Beacon controller”, a “Ryu controller”, etc. comes from the fact that
most controller frameworks actually do come with sufficient default Network
Applications to constitute a working controller, eg, L2 Learning Switch.

a programming-language-neutral manner, as a data
model. For example, this approach is taken by the
Merlin project [2], specifying a new external Domain
Specific Language (DSL) for this purpose. If such an
approach were to generally take hold, a lot of the
complications ensuing from the multitude of different
frameworks would disappear. However, we do not
foresee this to become the domineering approach to
design SDN Network Applications, nor would this
solve the issue of supporting legacy Network Appli-
cations developed for already existing framework.

One meta controller framework Create a new con-
troller framework that is a superset, in features, pro-
gramming models, and programming languages, of all
the relevant controller frameworks in use/of interest.
Instantiating the controller from this framework and
a diverse set of Network Applications would then
be a simple exercise. However, in practice, this is
a futile endeavor: chasing a moving target as new
controller platforms come and go; huge design and
implementation complexity.

Translating into one ‘universal” framework
Choose one target framework and translate foreign
Network Applications into this target framework; at
run-time, execute only this target framework.

This is indeed a tempting approach as it would
fulfill all goals and the run-time benefits are huge.
And if the different controller frameworks are simple
enough in terms of programming model and execu-
tion semantics, and if the programming models are
explicit enough to extract the structure from a given
source code, then this is indeed a possible venue. In
fact, we initially pursued this goal (in the context
of the NetIDE project), but found the semantic and
executional differences between different controller
frameworks to be too large to easily reconcile.

In addition, this approach is also burdened with other
difficulties: Which target platform for choose? How to
make it easy to develop the translation process for a
new, upcoming framework? In total, this seems like a
less promising alternative.

Run multiple controllers concurrently and inde-
pendently It would be trivial to instantiate one sep-
arate controller for each framework specified by any
Network Application that an administrator wants to
execute. But this falls short of the mark: Which con-
troller would be responsible for which events? How to
reconcile conflicting actions? How to enable Network
Applications to exchange events and actions, to access
a shared knowledge base, and to jointly take decisions
on which actions should be triggered? All that is
required to mimik the notion of “single controller”, but
none of that is easy to do with independent controllers.

Run multiple controllers, but coordinate them The
previous approach solved the issue of the execu-
tion semantics per controller framework. Amending
it with additional coordination then seems to solve
our problem. When running separate controllers per
framework (each one hosting possibly multiple Net-
work Applications), their access to the actual Network



Elements is shunted through one single controller. The
interaction between these multiple controllers can be
coordinated by an exchange protocol. This appears to
be a viable and pragmatically feasible option, which
we will pursue in the remainder of the paper.

This leads to the following design: The Controller Plane
will consist of multiple SDN Controller Frameworks, ar-
ranged into two layers, as shown in Figure 2. The Server
Controller Framework is defined as the entity that is the
primary controller physically connected and managing the
network elements. The Client Controller Framework allows
the Network Application to be executed on their targeted
Controller Framework, which is abstracted from the actual
Network Elements through the Server Controller Framework.
2 As a coordination protocol, our prototype currently uses
Pyretic’s [3] approach.
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SDN Framework Framework
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Fig. 2. Concept of Client/Server Controller Frameworks

We note that these multiple controllers serve a different
purpose than hierarchical controller concepts as proposed by,
e.g., Kandoo [4]. There, the goal is scalability and performance
and heterogeneity of controllers is (to the best of our knowl-
edge) not addressed. We hence believe these concepts to be
orthogonal; hierarchical scaling of our architecture is left for
future study.

B. Architectural options for Network Application representa-
tions

With such an architecture in mind, let us consider the
principal options when, in the sense of a software develop-
ment cycle, information about Network Applications can be
created, to later assist in the execution of these applications.
In the following, we consider the options for the generation
of Network Applications in different phases of the software
development cycle, whereas in the next Section III-C, we
consider the options for usage in the same phases.

1) Generation at development time: When generating in-
formation about a Network Application at development time,
the following information is available:

e The source code of the application, as this is the
primary artefact with which the developer works.

e  While developing, the developer also makes assump-
tions about the execution (or concurrency) model,

2 Although the Openflow 1.0 specification and above supports the concept
of multiple Server SDN Controller Frameworks managing the Network Ele-
ments for reliability and failover (using the roles Master/Equal/Slave), this is
orthogonal to the purpose of our architecture.

the libraries, APIs, etc. that are at his/her disposal,
provided by the particular controller framework in use.
Moreover, most controller frameworks are strongly
tied to a particular programming language. Hence, the
programming language might also be fixed.

e A more or less explicit information about the topology
or topologies to which this application is applicable —
e.g., a load-dependent routing algorithm might only
work in a Clos network but be inapplicable to fat
trees. However, it is usually the case that a developer
has a range of topologies in mind or that a topology
is parameterized. In that sense, we assume that a
topology pattern is available (and will provide editor
support for such patterns in our tool development).
Of course, a Network Application might make no
specific assumptions about the network topology in
which it works. To support such a case, an empty
pattern is valid as well.

2) Generation at compile time: All the information from
development time is available at compile time as well. Ad-
ditionally, compilers (with a liberal interpretation of what
constitutes a “compiler”) generate object code from the source
code. Here we assume standard language processing. Examples
include generating executable files from compiled languages
like C or producing intermediate representations like JAR files.

In principle, during this step, it might also be possible
to analyse the source code and extract structure from it like,
for example, which event handlers exist, to which events they
react, which code they execute in response to which event han-
dlers, what state information they keep and how they update it,
and which actions they produce, etc. As discussed above, this
task would be simple, perhaps even trivial, assuming a DSL
in place to describe the Network Application.

However, when analyzing actual frameworks and their
programming models, as well as typical example Network
Applications we did not see a realistic subset of expressability
that would enable such an approach. Obviously it would
be possible to stipulate required structures, but that results
in a considerable amount of limitation in the programming
models of the different frameworks. Very little of the existing
programs would conform to such a structure, and it seems
highly questionable whether it would be possible to establish
such a structure for existing controller frameworks — in a sense,
it combines the disadvantages of a DSL (lack of flexibility)
with the disadvantages of dealing with different controller
platforms.

It therefore seems not very promising to expect too much
from a compile-time approach to generate any valuable infor-
mation that should assist in the interaction of Network Ap-
plications written for different controller frameworks. Rather,
at compile time, it makes sense produce a representation of a
Network Application that is still tied to its “original” controller
framework, but has sufficient meta data in place to make it
deployable in combination with Network Applications written
for other frameworks.

3) Generation at deployment time: At deployment time,
we are given a Network Application as well as a concrete
system in which to deploy it. Deploying here means to take



this application’s code, start it and have it react to networking
events by issuing actions. We conceive of this as a typical sys-
tem administration step, triggered by an explicit administration
()ption3 . To do so, a few checks are necessary; these checks
will produce additional information representing the running
Network Application:

1)  First, we need to check whether the Network Ap-

plication’s network pattern matches with the actual
network of the system onto which we want to deploy
it. It the simplest case, the application’s pattern is
empty and hence always matches. Also simple is a
case where the application’s pattern only matches the
entire system’s network; more generally, matching is
simple when there is only a single way to do it. It
is also simple if the pattern cannot be matched at
all against the system’s network: then, the Network
Application cannot be deployed (and a corresponding
error message is produced).
If, on the other hand, matching the application’s pat-
tern against the actual network can be possible in sev-
eral different ways — for example, consider a multi-
level fat-tree network onto which a fat-tree routing
algorithm should be deployed: because of the tree’s
recursive nature, multiple different embeddings are
possible. In that case, we have to ask the administra-
tor to select between different alternatives, either by
specifying them beforehand as mapping/embedding
parameters, or by entering into a dialog as a result of
error messages.

2)  Second, during deployment, it is necessary to check
whether any open dependencies exist. Dependencies
can be mainly of two types:

e Dependency on a particular controller frame-
work: when it is not assumed that an arbitrary
controller framework can execute any arbi-
trary Network Application, Network Applica-
tions are still bound to their “original” frame-
work. Hence, to execute them, the specific
framework must be locally available. During
deployment, this dependency must be fulfilled
before a Network Application can be started.

e A Network Application could depend on other
Network Applications. These must also be
available, in order to be able to execute the
Network Application.

More generally, dependency processing in the sense
of bigger frameworks (e.g., Open Services Gateway
Initiative (OSGi)) can be considered here as well.
3) As a third step before a Network Application is
started at deployment, the framework it is written
for must also start the controller (e.g., start a Bea-
con controller instance from the Beacon controller
framework). We designate, for the sake of simplicity,
this running instance as simply a controller; where
necessary, we use controller framework to designate
the collection of code, libraries, APIs etc. that realize
this controller.
This step is not always needed since another Network

3 Automatic deployment is conceivable as long as there are no ambiguities
to resolve.

Application written for that framework might already
be running. In general, the same controller can then
be reused.

In summary, at deployment time, mostly checking activities
will take place, as well as bookkeeping. This will generate
information that describes the interplay of Network Applica-
tions, and can hence be regarded as a part of an intermediate
representation. However, it will indeed only become available
at deployment time since at development or compile time, the
very combination of controllers and applications to handle is
unknown.

4) Generation at run time: Once deployed in the network
engine and paired with their corresponding controllers, Net-
work Applications will start to react to events, collect state,
and trigger actions. Events and actions are transported by the
controllers, acting as a conduit from/to the controlled switches
(or other network entities).

In a controller-agnostic scenario, some adaptation function-
ality between the client and server controllers is needed. This
functionality, which intercepts platform specific actions and
translates them to a generalised, platform agnostic represen-
tation and viceversa, can be isolated as a specific layer in
each controller. In an ideal case, these layers are stateless and
accumulate no data. However, we need to plan for stateful
interception layers . The information generated in them would
constitute the dynamic part of an intermediate representation
format.

C. Requirements for Using Representations of Network Appli-
cations

Once we have pondered the different options and require-
ments for generating a hypothetical Intermediate Representa-
tion Format (IRF) that would hold our Network applications,
we also need to see how it would be used in the different
phases of the Software Life-Cycle as applied to Network
applications and what additional requirements the mere usage
of this IRF would impose.

1) Development time: At development time, access to
metadata and to source code is necessary. Meta-data can be
easily encompassed in a standard file description format (e.g.,
XML). This results in a shippable artefact for one Network
Application.

2) Compile time: At compile time, access to metadata is
partially necessary to use the correct compiler and to link
against the right libraries of a controller framework. The
outcome of the compile process will add object code to
the artefact describing a Network Application. In interpreted
languages, the compilation as such does not exist and we are
considering the possibility of including the source code of the
network application directly into the artefact describing the
Network Application.

3) Deployment time: At deployment time, metadata de-
scribing topology templates are transformed by a network
matching/embedding process from a pattern into a concrete
topology. The topology just generated replaces the topology
template in the artefact describing the Network Application.
This is then taken and stored by the network engine.



4) Run time: At run time, additional state information is
collected by the interception layers discussed previously. We
foresee this information to be only dynamically updated; it is
of course possible to generate a snapshot of the information of
a running collection of Network Applications in there as well
(which might be relevant for debugging, e.g.).

IV. RELATED WORK

Our main goal is to provide a framework that allows us
to reuse Network Applications instead of having to rewrite
them when changing the controller platform. There are several
proposals for composing Network Applications in Software
Defined Networks.

OpenVirtex [5] focuses at implementing multi-tenancy in
OpenFlow (OF) networks. It provides isolation between differ-
ent controllers that run tenant’s Network Applications over a
shared infrastructure. CoVisor [6] provides a hypervisor-alike
approach and implement the two-layer controller approach that
allow the composition of Network Applications running on
multiple controllers. They have an initial implementation [7]
derived from OpenVirtex. For their tests they use the Floodlight
controller [8]. They provide a range of composition operators
we are evaluating.

Flowbricks [9] provide an alternative architecture to Co-
Visor. They rely on the implementation of pipelines for flow
tables, which go beyond the current capabilities of chained
flow tables in OpenFlow 1.4. Their implementation relies on a
modified version of OpenVSwitch. It can thus not be deployed
on standard SDN equipment and its future heavily depends on
the (improbable event of the) OF specifications following this
concept.

Corybantic [10] is a system that allows to deal with
conflicts between coexisting Network Applications. It defines
an API to allow controllers to propose how network resources
should be used and define how proposals of competing con-
trollers should be evaluated. All the proposals are collected
and evaluated by a Coordination Module to produce a global
configuration. The process requires an interaction between the
modules and the Coordinator, who finally mandates what the
Network Applications have to do. The main drawbacks we
see in this approach is that Network Applications have to
be designed to use the proposed API and thus depending on
Corybantic, while we target a Controller-agnostic approach.

V. CONCLUSION

In this paper, we have discussed the architectural options
for a controller structure and for a corresponding representation
of Network Applications that enable the reuse and coordinated
deployment of Network Applications from different controller
frameworks in a single network. We see an architecture evolv-
ing that consists of different aspects at development, compile,
deploy, and run time.

Regarding the representation of Network Applications, we
foresee the need to handle both static and dynamic informa-
tion simultaneously. Some of the information about Network
Applications is static; it describes aspects like source and
object code as well as metadata (which controller framework,
dependencies, etc.). Some of the information only starts to

exists at deployment or run time, and we hence conceive of it
as a dynamic part of a representation format.

We are currently in the process of prototyping such a
two-layered controller architecture along with the necessary
tooling and metadata structure. Early results leverage the API
and protocol provided by Pyretic to implement the interaction
between these two controller layers and already allow us to
execute Pyretic applications on top of an OpenDaylight [11] or
Ryu [12] controller. This platform will allow us to test different
approaches and select those that best fit our needs. For more
information, please visit our project sites [13], [14].
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